Skip to main content
Log in

Beta irradiation effects on impedance spectra of electrospun PEDOT:PSS nanofibres

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Poly(3,4-ethylenedioxythio-phene):poly(styrenesulphonate) (PEDOT:PSS) nanofibres were first prepared via electrospinning method. Microstructural arrangement of the nanofibres was investigated by scanning electron microscopy technique. Then, the effect of beta irradiation with different absorbed doses on their impedance spectra were investigated in the frequency range from 5 to 13 × 106. It was observed that beta irradiation leads to a considerable decrease in both real and imaginary parts of the complex dielectric function, and alternating current conductivity of the nanofibres. The obtained frequency dependent conductivity data were discussed in terms of pair approximation. It was established that, for all beta irradiation doses, the frequency dependence of the conductivity is characterized by the presence of four frequency regions with different slopes. Analysis of the impedance data revealed that chain scission via chain cross-linking and free radical formation are most likely mechanisms for changes in impedance parameters. Two clear semicircles in Nyquist plot have been successfully explained by employing two parallel R-CPE equivalent circuits in series configuration. An overall evaluation of the obtained data indicates that electrospun PEDOT:PSS nanofibres have great potential for the development of highly sensitive impedance-based beta radiation sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Xia Y and Ouyang J 2010 ACS Appl. Mater. Inter. 2 474

    Article  CAS  Google Scholar 

  2. Ghazy O A, Ibrahim M M, Abou Elfadl F I, Hosni H M, Shehata E M, Deghiedy N M et al 2015 J. Rad. Res. Appl. Sci. 8 166

    CAS  Google Scholar 

  3. Ouyang J and Yang Y 2006 Adv. Mater. 18 2141

    Article  CAS  Google Scholar 

  4. Song D, Li M, Wang T, Fu P, Li Y, Jiang B et al 2014 J. Photochem. Photobiol. A: Chem. 293 261

    Article  Google Scholar 

  5. Syu H J, Shiu S C and Lin C F 2012 Sol. Energy Mater. Sol. Cells 98 267

    Article  CAS  Google Scholar 

  6. Xia Y, Sun K and Ouyang J 2012 Energy Environ. Sci. 5 5325

    Article  CAS  Google Scholar 

  7. Heuer H W, Wehrmann R and Kirchmeyer S 2002 Adv. Funct. Mater. 12 89

    Article  CAS  Google Scholar 

  8. Zhang Q, Wang X, Fu J, Liu R, He H, Ma J et al 2018 Materials 11 1744

    Article  Google Scholar 

  9. Liu N, Fang G, Wan J, Zhou H, Long H and Zhao X 2011 J. Mater. Chem. 21 18962

    Article  CAS  Google Scholar 

  10. Sarabi G, Latifi M and Bagherzadeh R 2018 6th International Biennial Conference on ultrafine grained nanostructured materials p 020045

  11. Bessaire B, Maillard M, Salles V, Yeghoyan T, Celle C, Simonato J P et al 2017 ACS Appl. Mater. Interfaces 9 950

    Article  CAS  Google Scholar 

  12. Abd El-Mageed H R, Abd El-Salam H M and Eissa M F 2017 Radiat. Protect. Dosim. 11 1

    Google Scholar 

  13. Schrote K and Frey M W 2013 Polymer 54 737

    Article  CAS  Google Scholar 

  14. Eissa M F, Kaid M A and Kamel N 2012 J. Appl. Polym. Sci. 125 3682

    Article  CAS  Google Scholar 

  15. Nambiar S and Yeow J T W 2012 ACS Appl. Mater. Interfaces 4 717

    Article  Google Scholar 

  16. O’Rourke Muisener P A, Clayton L, D’Angelo J, Harmon J P, Sikder A K, Kumar A et al 2002 J. Mater. Res. 17 2507

    Article  Google Scholar 

  17. Olenych I B, Aksimentyeva O I, Monastyrskii L S, Horbenko Y Y and Yarytska L I 2015 Nanoscale Res. Lett. 10 187

    Article  Google Scholar 

  18. Karbovnyk I, Olenych I B, Aksimentyeva O, Klym H, Dzendzelyuk O, Olenych Y et al 2016 Nanoscale Res. Lett. 11 84

    Article  Google Scholar 

  19. Kane M C, Lascola R J and Clark E A 2010 Radiat. Phys. Chem. 79 1185

    Article  Google Scholar 

  20. Macdonald J R 1987 Impedance spectroscopy theory experiment and applications (New York: Wiley) chapters 2 and 4

  21. Kumari K, Prasad K and Choudhary R N P 2008 J. Alloys Compd. 453 325

    Article  Google Scholar 

  22. Woods R J and Pikaev A K 1993 Applied radiation chemistry: radiation processing (New York: Wiley) chapter 7

  23. Wolszczak M, Kroh J and Abdel-Hamid M M 1995 Radiat. Phys. Chem. 1 71

    Article  Google Scholar 

  24. Yao Q, Liu L and Li C 1993 Polym. Bull. 31 601

    Article  CAS  Google Scholar 

  25. Altındal A, Abdurrahmanoğlu Ş, Bulut M and Bekaroğlu Ö 2005 Synt. Met. 150 181

    Article  Google Scholar 

  26. Elliot S R 1987 Adv. Phys. 36 135

    Article  Google Scholar 

  27. Long A R 1982 Adv. Phys. 31 553

    Article  CAS  Google Scholar 

  28. Pollak M and Pike G E 1972 Phys. Rev. Lett. 28 1449

    Article  CAS  Google Scholar 

  29. Oruç Ç and Altındal A 2017 Ceram. Int. 43 10708

    Article  Google Scholar 

  30. Maxwell J C (ed) 1873 Notes on recent researches in electricity and magnetism (London: Oxford University Press) vol 1, p 328

  31. Jorcin J B, Orazem M E, Pebere N and Ribollet B 2006 Electrochim. Acta 51 1473

    Article  CAS  Google Scholar 

  32. Sateesh P, Omprakash J, Kumar G S and Prasad G 2015 J. Adv. Dielectr. 5 1550002

    Article  CAS  Google Scholar 

  33. Min D M, Li S T, Hirai N and Ohki Y 2016 IEEE Trans. Dielectr. Electr. Insul. 23 3620

    Article  CAS  Google Scholar 

  34. Tian F Q and Ohki Y 2014 J. Phys. D 47 45311

    Article  CAS  Google Scholar 

  35. Diaham S and Locatelli M L 2012 J. Appl. Phys. 112 13710

    Article  Google Scholar 

  36. Sheha E M, Nasr M M and El-Mansy M K 2015 J. Adv. Res. 6 563

    Article  CAS  Google Scholar 

  37. Alamer F A 2018 Cellulose 25 6221

    Article  Google Scholar 

  38. Yazıcı A, Ünüş N, Altındal A, Salih B and Bekaroğlu Ö 2012 Dalton Trans. 41 3773

    Article  Google Scholar 

  39. Canlıca M, Altındal A and Nyokong T 2012 J. Porphy. Phthaloc. 16 827

    Google Scholar 

Download references

Acknowledgement

This study was supported by the Research Fund of Yıldız Technical University (Project No. FDK-2018-3456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet AltΙndal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urfa, Y., AltΙndal, A. Beta irradiation effects on impedance spectra of electrospun PEDOT:PSS nanofibres. Bull Mater Sci 44, 215 (2021). https://doi.org/10.1007/s12034-021-02507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02507-1

Keywords

Navigation