Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 13, 2021

Rational approaches towards inorganic and organometallic antibacterials

  • Jeannine Hess ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

The occurrence of drug-resistant bacteria is drastically rising and new and effective antibiotic classes are urgently needed. However, most of the compounds in development are minor modifications of previously used drugs to which bacteria can easily develop resistance. The investigation of inorganic and organometallic compounds as antibiotics is an alternative approach that holds great promises due to the ability of such molecules to trigger metal-specific mechanisms of action, which results in lethal consequences for pathogens. In this review, a selection of concepts to rationally design inorganic and organometallic antibiotics is discussed, highlighting their advantages by comparing them to classical drug discovery programmes. The review concludes with a short perspective for the future of antibiotic drug development and the role metal-based compounds will play in the field.


Corresponding author: Jeannine Hess, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK, E-mail:
Future address: Jeannine Hess, Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; and Department of Chemistry, King’s College London, London SE1 1DB, UK

Award Identifier / Grant number: P2ZHP2_164947

Award Identifier / Grant number: 789607

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the Marie Curie Research Grants Scheme, EU H2020 Framework Programme (H2020-MSCA-IF-2017, ID: 789607) and the Swiss National Science Foundation, the Early PostDoc.Mobility fellowship (P2ZHP2_164947).

  3. Conflict of interest statement: The author declares that there are no known conflicts of interest associated with this publication.

References

Albada, B. and Metzler-Nolte, N. (2017). Highly potent antibacterial organometallic peptide conjugates. Acc. Chem. Res. 50: 2510–2518, https://doi.org/10.1021/acs.accounts.7b00282.Search in Google Scholar PubMed

Ambler, R.P., Baddiley, J., and Abraham, E.P. (1980). The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 289: 321–331, https://doi.org/10.1098/rstb.1980.0049.Search in Google Scholar PubMed

AMR-Review (2016). Review on antimicrobial resistance. AMR-Review.org, London.Search in Google Scholar

Årdal, C., Balasegaram, M., Laxminarayan, R., McAdams, D., Outterson, K., Rex, J.H., and Sumpradit, N. (2020). Antibiotic development — economic, regulatory and societal challenges. Nat. Rev. Microbiol. 18: 267–274, https://doi.org/10.1038/s41579-019-0293-3.Search in Google Scholar PubMed

Arenas, Y., Monro, S., Shi, G., Mandel, A., McFarland, S., and Lilge, L. (2013). Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers. Photodiagnosis Photodyn. Ther. 10: 615–625, https://doi.org/10.1016/j.pdpdt.2013.07.001.Search in Google Scholar PubMed

Bartolomeu, M., Rocha, S., Cunha, Â., Neves, M.G.P.M.S., Faustino, M.A.F., and Almeida, A. (2016). Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus. Front. Microbiol. 7: 267, https://doi.org/10.3389/fmicb.2016.00267.Search in Google Scholar PubMed PubMed Central

Betts, J., Nagel, C., Schatzschneider, U., Poole, R., and La Ragione, R.M. (2017). Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)3(tpa-κ3N)]Br versus multidrug-resistant isolates of Avian Pathogenic Escherichia coli and its synergy with colistin. PloS One 12: e0186359, https://doi.org/10.1371/journal.pone.0186359.Search in Google Scholar PubMed PubMed Central

Betts, J.W., Roth, P., Pattrick, C.A., Southam, H.M., La Ragione, R.M., Poole, R.K., and Schatzschneider, U. (2020). Antibacterial activity of Mn(i) and Re(i) tricarbonyl complexes conjugated to a bile acid carrier molecule. Metallomics 12: 1563–1575, https://doi.org/10.1039/d0mt00142b.Search in Google Scholar PubMed

Bolognesi, M.L. (2013). Polypharmacology in a single drug: multitarget drugs. Curr. Med. Chem. 20: 1639–1645, https://doi.org/10.2174/0929867311320130004.Search in Google Scholar PubMed

Boros, E., Dyson, P.J., and Gasser, G. (2020). Classification of metal-based drugs according to their mechanisms of action. Inside Chem. 6: 41–60, https://doi.org/10.1016/j.chempr.2019.10.013.Search in Google Scholar PubMed PubMed Central

Bosch, F. and Rosich, L. (2008). The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his nobel prize. Pharmacology 82: 171–179, https://doi.org/10.1159/000149583.Search in Google Scholar PubMed PubMed Central

Bush, K. and Fisher, J.F. (2011). Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu. Rev. Microbiol. 65: 455–478, https://doi.org/10.1146/annurev-micro-090110-102911.Search in Google Scholar

Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., Colomb-Cotinat, M., Kretzschmar, M.E., Devleesschauwer, B., Cecchini, M., et al.. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19: 56–66, https://doi.org/10.1016/s1473-3099(18)30605-4.Search in Google Scholar

Centers for Disease Control and Prevention (U.S.). (2019). Antibiotic resistance threats in the United States, 2019. Cent. Dis. Contr. Prev. (U.S.), https://doi.org/10.15620/cdc:82532.10.15620/cdc:82532Search in Google Scholar

Chow, M.J., Licona, C., Yuan Qiang Wong, D., Pastorin, G., Gaiddon, C., and Ang, W.H. (2014). Discovery and investigation of anticancer ruthenium–arene schiff-base complexes via water-promoted combinatorial three-component assembly. J. Med. Chem. 57: 6043–6059, https://doi.org/10.1021/jm500455p.Search in Google Scholar

d’Orchymont, F., Hess, J., Panic, G., Jakubaszek, M., Gemperle, L., Keiser, J., and Gasser, G. (2018). Synthesis, characterization and biological activity of organometallic derivatives of the antimalarial drug mefloquine as new antischistosomal drug candidates. Med. Chem. Commun. 9: 1905–1909.10.1039/C8MD00396CSearch in Google Scholar

de Almeida, A., Oliveira, B.L., Correia, J.D.G., Soveral, G., and Casini, A. (2013). Emerging protein targets for metal-based pharmaceutical agents: an update. Coord. Chem. Rev. 257: 2689–2704, https://doi.org/10.1016/j.ccr.2013.01.031.Search in Google Scholar

Dolmans, D.E.J.G.J., Fukumura, D., and Jain, R.K. (2003). Photodynamic therapy for cancer. Nat. Rev. Canc. 3: 380–387, https://doi.org/10.1038/nrc1071.Search in Google Scholar

DuChane, C.M., Brown, L.C., Dozier, V.S., and Merola, J.S. (2018). Synthesis, characterization, and antimicrobial activity of RhIII and IrIII β-diketonato piano-stool compounds. Organometallics 37: 530–538, https://doi.org/10.1021/acs.organomet.7b00742.Search in Google Scholar

Edwards, E.I., Epton, R., and Marr, G. (1975). Organometallic derivatives of penicillins and cephalosporins a new class of semi-synthetic antibiotics. J. Organomet. Chem. 85: C23–C25, https://doi.org/10.1016/s0022-328x(00)80708-1.Search in Google Scholar

Edwards, E.I., Epton, R., and Marr, G. (1976a). A new class of semi-synthetic antibiotics: ferrocenyl-penicillins and -cephalosporins. J. Organomet. Chem. 107: 351–357, https://doi.org/10.1016/s0022-328x(00)91527-4.Search in Google Scholar

Edwards, E.I., Epton, R., and Marr, G. (1976b). 1,1′-ferrocenyldiacetic acid anhydride and its use in the preparation of heteroannularly substituted ferrocenyl-penicillins and -cephalosporins. J. Organomet. Chem. 122: C49–C53, https://doi.org/10.1016/s0022-328x(00)82406-7.Search in Google Scholar

Edwards, E.I., Epton, R., and Marr, G. (1979). The synthesis and reactions of homonuclear ferrocene acid anhydrides and their use in the preparation of ferrocenylpenicillins and -cephalosporins. J. Organomet. Chem. 168: 259–272, https://doi.org/10.1016/s0022-328x(00)83282-9.Search in Google Scholar

Englinger, B., Pirker, C., Heffeter, P., Terenzi, A., Kowol, C.R., Keppler, B.K., and Berger, W. (2019). Metal drugs and the anticancer immune response. Chem. Rev. 106: 1519–1624.10.1021/acs.chemrev.8b00396Search in Google Scholar PubMed

Fleming, A. (1929). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br. J. Exp. Pathol. 10: 226–236.10.1093/clinids/2.1.129Search in Google Scholar

Fleming, A. (1980). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Rev. Infect. Dis. 2: 129–139, https://doi.org/10.1093/clinids/2.1.129.Search in Google Scholar

Frei, A., Amado, M., Cooper, M.A., and Blaskovich, M.A.T. (2020a). Light-activated rhenium complexes with dual mode of action against bacteria. Chem. Eur J. 26: 2852–2858, https://doi.org/10.1002/chem.201904689.Search in Google Scholar PubMed PubMed Central

Frei, A., Rubbiani, R., Tubafard, S., Blacque, O., Anstaett, P., Felgenträger, A., Maisch, T., Spiccia, L., and Gasser, G. (2014). Synthesis, characterization, and biological evaluation of new Ru(II) polypyridyl photosensitizers for photodynamic therapy. J. Med. Chem. 57: 7280–7292, https://doi.org/10.1021/jm500566f.Search in Google Scholar PubMed

Frei, A., Zuegg, J., Elliott, A.G., Baker, M., Braese, S., Brown, C., Chen, F., Dowson, C.G., Dujardin, G., Jung, N., et al.. (2020b). Metal complexes as a promising source for new antibiotics. Chem. Sci. 11: 2627–2639, https://doi.org/10.1039/c9sc06460e.Search in Google Scholar PubMed PubMed Central

Gasser, G. and Metzler-Nolte, N. (2012). The potential of organometallic complexes in medicinal chemistry. Curr. Opin. Chem. Biol. 16: 84–91, https://doi.org/10.1016/j.cbpa.2012.01.013.Search in Google Scholar PubMed

Gasser, G., Ott, I., and Metzler-Nolte, N. (2011). Organometallic anticancer compounds. J. Med. Chem. 54: 3–25, https://doi.org/10.1021/jm100020w.Search in Google Scholar PubMed PubMed Central

Giuliani, F., Martinelli, M., Cocchi, A., Arbia, D., Fantetti, L., and Roncucci, G. (2010). In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrob. Agents Chemother. 54: 637–642, https://doi.org/10.1128/aac.00603-09.Search in Google Scholar

Glišić, B.Đ. and Djuran, M.I. (2014). Gold complexes as antimicrobial agents: an overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans. 43: 5950–5969.10.1039/C4DT00022FSearch in Google Scholar

Hamblin, M.R. and Hasan, T. (2004). Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3: 436–450, https://doi.org/10.1039/b311900a.Search in Google Scholar PubMed PubMed Central

Hartinger, C.G., Groessl, M., Meier, S.M., Casini, A., and Dyson, P.J. (2013). Application of mass spectrometric techniques to delineate the modes-of-action of anticancer metallodrugs. Chem. Soc. Rev. 42: 6186–6199, https://doi.org/10.1039/c3cs35532b.Search in Google Scholar PubMed

Heinemann, F., Karges, J., and Gasser, G. (2017). Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc. Chem. Res. 50: 2727–2736, doi:https://doi.org/10.1021/acs.accounts.7b00180.Search in Google Scholar PubMed

Hess, J., Keiser, J., and Gasser, G. (2015). Toward organometallic antischistosomal drug candidates. Future Med. Chem. 7: 821–830, https://doi.org/10.4155/fmc.15.22.Search in Google Scholar PubMed

Hess, J., Panic, G., Patra, M., Mastrobuoni, L., Spingler, B., Roy, S., Keiser, J., and Gasser, G. (2017). Ferrocenyl, ruthenocenyl, and benzyl oxamniquine derivatives with cross-species activity against schistosoma mansoni and schistosoma haematobium. ACS Infect. Dis. 3: 645–652, https://doi.org/10.1021/acsinfecdis.7b00054.Search in Google Scholar PubMed

Hess, J., Patra, M., Jabbar, A., Pierroz, V., Konatschnig, S., Spingler, B., Ferrari, S., Gasser, R.B., and Gasser, G. (2016a). Assessment of the nematocidal activity of metallocenyl analogues of monepantel. Dalton Trans. 45: 17662–17671, https://doi.org/10.1039/c6dt03376h.Search in Google Scholar PubMed

Hess, J., Patra, M., Rangasamy, L., Konatschnig, S., Blacque, O., Jabbar, A., Mac, P., Jorgensen, E.M., Gasser, R.B., and Gasser, G. (2016b). Organometallic derivatization of the nematocidal drug monepantel leads to promising antiparasitic drug candidates. Chem. Eur J. 22: 16602–16612, https://doi.org/10.1002/chem.201602851.Search in Google Scholar PubMed

Jaouen, G., Vessières, A., and Top, S. (2015). Ferrocifen type anti cancer drugs. Chem. Soc. Rev. 44: 8802–8817, https://doi.org/10.1039/c5cs00486a.Search in Google Scholar PubMed

Johnstone, T.C., Suntharalingam, K., and Lippard, S.J. (2016). The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 116: 3436–3486, https://doi.org/10.1021/acs.chemrev.5b00597.Search in Google Scholar PubMed PubMed Central

Kashef, N. and Hamblin, M.R. (2017). Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist. Updates 31: 31–42, https://doi.org/10.1016/j.drup.2017.07.003.Search in Google Scholar PubMed PubMed Central

Lei, W., Zhou, Q., Jiang, G., Zhang, B., and Wang, X. (2011). Photodynamic inactivation of Escherichia coli by Ru(II) complexes. Photochem. Photobiol. Sci. 10: 887–890, https://doi.org/10.1039/c0pp00275e.Search in Google Scholar PubMed

Leonhartsberger, S., Korsa, I., and Böck, A. (2002). The molecular biology of formate metabolism in enterobacteria. J. Mol. Microbiol. Biotechnol. 4: 269–276.Search in Google Scholar

Leonidova, A., Pierroz, V., Rubbiani, R., Heier, J., Ferrari, S., and Gasser, G. (2014). Towards cancer cell-specific phototoxic organometallic rhenium(I) complexes. Dalton Trans. 43: 4287–4294, https://doi.org/10.1039/c3dt51817e.Search in Google Scholar PubMed

Lewandowski, E.M., Skiba, J., Torelli, N.J., Rajnisz, A., Solecka, J., Kowalski, K., and Chen, Y. (2015). Antibacterial properties and atomic resolution X-ray complex crystal structure of a ruthenocene conjugated β-lactam antibiotic. Chem. Commun. 51: 6186–6189, https://doi.org/10.1039/c5cc00904a.Search in Google Scholar PubMed PubMed Central

Lewandowski, E.M., Szczupak, Ł., Kowalczyk, A., Mendoza, G., Arruebo, M., Jacobs, L.M.C., Stączek, P., Chen, Y., and Kowalski, K. (2020). Metallocenyl 7-ACA conjugates: antibacterial activity studies and atomic-resolution X-ray crystal structure with CTX-M β-lactamase. ChemBioChem 21: 2187–2195, https://doi.org/10.1002/cbic.202000054.Search in Google Scholar PubMed

Lewandowski, E.M., Szczupak, Ł., Wong, S., Skiba, J., Guśpiel, A., Solecka, J., Vrček, V., Kowalski, K., and Chen, Y. (2017). Antibacterial properties of metallocenyl-7-ADCA derivatives and structure in complex with CTX-M β-lactamase. Organometallics 36: 1673–1676, https://doi.org/10.1021/acs.organomet.6b00888.Search in Google Scholar PubMed PubMed Central

Long, B., He, C., Yang, Y., and Xiang, J. (2010). Synthesis, characterization and antibacterial activities of some new ferrocene-containing penems. Eur. J. Med. Chem. 45: 1181–1188, https://doi.org/10.1016/j.ejmech.2009.12.045.Search in Google Scholar PubMed

Lovering, F., Bikker, J., and Humblet, C. (2009). Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52: 6752–6756, https://doi.org/10.1021/jm901241e.Search in Google Scholar PubMed

Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O., and Dessen, A. (2006). Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol. Rev. 30: 673–691, https://doi.org/10.1111/j.1574-6976.2006.00024.x.Search in Google Scholar PubMed

Mazzei, L., Wenzel, M.N., Cianci, M., Palombo, M., Casini, A., and Ciurli, S. (2019). Inhibition mechanism of urease by Au(III) compounds unveiled by X-ray diffraction analysis. ACS Med. Chem. Lett. 10: 564–570, https://doi.org/10.1021/acsmedchemlett.8b00585.Search in Google Scholar

Meggers, E. (2007). Exploring biologically relevant chemical space with metal complexes. Curr. Opin. Chem. Biol. 11: 287–292, https://doi.org/10.1016/j.cbpa.2007.05.013.Search in Google Scholar

Meggers, E. (2009). Targeting proteins with metal complexes. Chem. Commun. 1001–1010, https://doi.org/10.1039/b813568a.Search in Google Scholar

Microbion Corporation. (2020a). A phase 1b/2a randomized, double-blind, placebo-controlled study to assess the safety, tolerability and efficacy of adjunctive treatment with topically applied MBN-101 in patients with moderate to severe diabetic foot infection (DFI) (Clinical trial registration No. NCT02723539). clinicaltrials.gov.Search in Google Scholar

Microbion Corporation. (2020b). Phase 2a randomized, single-blind, placebo-controlled, 12-week escalating dose study to assess the safety, tolerability and clinical activity of 3 concentrations of locally applied MBN-101 to infected bone sites (Clinical trial registration No. NCT02436876). clinicaltrials.gov.Search in Google Scholar

Microbion Corporation Receives Additional Funding Support from the Cystic Fibrosis Foundation to Speed Advancement of Inhaled Pravibismane. (2021). [WWW document], Available at: <https://www.microbioncorp.com/_news/microbion-corporation-receives-additional-funding-support-from-the-cystic-fibrosis-foundation-to-speed-advancement-of-inhaled-pravibismane> (Accessed 25 February 2021).Search in Google Scholar

Morphy, R., Kay, C., and Rankovic, Z. (2004). From magic bullets to designed multiple ligands. Drug Discov. Today 9: 641–651, https://doi.org/10.1016/s1359-6446(04)03163-0.Search in Google Scholar

Morrison, C.N., Prosser, K.E., Stokes, R.W., Cordes, A., Metzler-Nolte, N., and Cohen, S.M. (2020). Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. Chem. Sci. 11: 1216–1225, https://doi.org/10.1039/c9sc05586j.Search in Google Scholar PubMed PubMed Central

Mulcahy, S.P. and Meggers, E. (2010). Organometallics as structural scaffolds for enzyme inhibitor design. In: Jaouen, G. and Metzler-Nolte, N. (Eds.). Medicinal organometallic chemistry, topics in organometallic chemistry. Berlin, Heidelberg, Springer, pp. 141–153.10.1007/978-3-642-13185-1_6Search in Google Scholar

Ong, Y.C., Roy, S., Andrews, P.C., and Gasser, G. (2019). Metal compounds against neglected tropical diseases. Chem. Rev. 119: 730–796, https://doi.org/10.1021/acs.chemrev.8b00338.Search in Google Scholar PubMed

Patra, M. and Gasser, G. (2017). The medicinal chemistry of ferrocene and its derivatives. Nat. Rev. Chem. 1: 1–12, https://doi.org/10.1038/s41570-017-0066.Search in Google Scholar

Patra, M., Gasser, G., and Metzler-Nolte, N. (2012). Small organometallic compounds as antibacterial agents. Dalton Trans. 41: 6350–6358, https://doi.org/10.1039/c2dt12460b.Search in Google Scholar PubMed

Patra, M., Gasser, G., Pinto, A., Merz, K., Ott, I., Bandow, J.E., and Metzler‐Nolte, N. (2009). Synthesis and biological evaluation of chromium bioorganometallics based on the antibiotic platensimycin lead structure. ChemMedChem 4: 1930–1938, https://doi.org/10.1002/cmdc.200900347.Search in Google Scholar PubMed

Patra, M., Gasser, G., Wenzel, M., Merz, K., Bandow, J.E., and Metzler-Nolte, N. (2010). Synthesis and biological evaluation of ferrocene-containing bioorganometallics inspired by the antibiotic platensimycin lead structure. Organometallics 29: 4312–4319, https://doi.org/10.1021/om100614c.Search in Google Scholar

Patra, M., Gasser, G., Wenzel, M., Merz, K., Bandow, J.E., and Metzler‐Nolte, N. (2011). Synthesis of optically active ferrocene-containing platensimycin derivatives with a C6–C7 substitution pattern. Eur. J. Inorg. Chem. 2011: 3295–3302, https://doi.org/10.1002/ejic.201100497.Search in Google Scholar

Patra, M., Ingram, K., Leonidova, A., Pierroz, V., Ferrari, S., Robertson, M.N., Todd, M.H., Keiser, J., and Gasser, G. (2013). In vitro metabolic profile and in vivo antischistosomal activity studies of (η6-praziquantel)Cr(CO)3 derivatives. J. Med. Chem. 56: 9192–9198, https://doi.org/10.1021/jm401287m.Search in Google Scholar PubMed

Patra, M., Wenzel, M., Prochnow, P., Pierroz, V., Gasser, G., Bandow, J.E., and Metzler-Nolte, N. (2014). An organometallic structure-activity relationship study reveals the essential role of a Re(CO)3 moiety in the activity against gram-positive pathogens including MRSA. Chem. Sci. 6: 214–224, https://doi.org/10.1039/c4sc02709d.Search in Google Scholar PubMed PubMed Central

Pietzke, M., Meiser, J., and Vazquez, A. (2020). Formate metabolism in health and disease. Mol. Metabol. 33: 23–37, https://doi.org/10.1016/j.molmet.2019.05.012.Search in Google Scholar PubMed PubMed Central

Plaetzer, K., Krammer, B., Berlanda, J., Berr, F., and Kiesslich, T. (2009). Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Laser Med. Sci. 24: 259–268, https://doi.org/10.1007/s10103-008-0539-1.Search in Google Scholar PubMed

Prosser, K.E., Stokes, R.W., and Cohen, S.M. (2020). Evaluation of 3-dimensionality in approved and experimental drug space. ACS Med. Chem. Lett. 11: 1292–1298, https://doi.org/10.1021/acsmedchemlett.0c00121.Search in Google Scholar PubMed PubMed Central

Ramsay, R.R., Popovic-Nikolic, M.R., Nikolic, K., Uliassi, E., and Bolognesi, M.L. (2018). A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 7: 3, https://doi.org/10.1186/s40169-017-0181-2.Search in Google Scholar PubMed PubMed Central

Rana, N., Jesse, H.E., Tinajero-Trejo, M., Butler, J.A., Tarlit, J.D., von und zur Muhlen, M.L., Nagel, C., Schatzschneider, U., and Poole, R.K. (2017). A manganese photosensitive tricarbonyl molecule [Mn(CO)3(tpa-κ3N)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli. Microbiology (Read.) 163: 1477–1489, https://doi.org/10.1099/mic.0.000526.Search in Google Scholar PubMed PubMed Central

Rapacka-Zdonczyk, A., Wozniak, A., Pieranski, M., Woziwodzka, A., Bielawski, K.P., and Grinholc, M. (2019). Development of Staphylococcus aureus tolerance to antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal treatment. Sci. Rep. 9: 9423, https://doi.org/10.1038/s41598-019-45962-x.Search in Google Scholar PubMed PubMed Central

Sauer, W.H.B. and Schwarz, M.K. (2003). Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43: 987–1003, https://doi.org/10.1021/ci025599w.Search in Google Scholar

Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A., and Charlier, P. (2008). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32: 234–258, https://doi.org/10.1111/j.1574-6976.2008.00105.x.Search in Google Scholar

Schatzschneider, U. (2019). Chapter 9 – antimicrobial activity of organometal compounds: past, present, and future prospects. In: Hirao, T., and Moriuchi, T. (Eds.), Advances in bioorganometallic chemistry. Elsevier, Amsterdam, pp. 173–192.10.1016/B978-0-12-814197-7.00009-1Search in Google Scholar

Schlotter, K., Boeckler, F., Hübner, H., and Gmeiner, P. (2005). Fancy bioisosteres: metallocene-derived G-protein-coupled receptor ligands with subnanomolar binding affinity and novel selectivity profiles. J. Med. Chem. 48: 3696–3699, https://doi.org/10.1021/jm050170s.Search in Google Scholar

Scutaru, D., Mazilu, I., Vâţǎ, M., Tǎtaru, L., Vlase, A., Lixandru, T., and Simionescu, C. (1991a). Heterodisubstituted derivatives of ferrocene. Ferrocene-containing penicillins and cephalosporins. J. Organomet. Chem. 401: 87–90, https://doi.org/10.1016/0022-328x(91)86198-y.Search in Google Scholar

Scutaru, D., Tǎtaru, L., Mazilu, I., Diaconu, E., Lixandru, T., and Simionescu, C. (1991b). Monosubstituted derivatives of ferrocene. Ferrocene-containing penicillins and cephalosporins. J. Organomet. Chem. 401: 81–85, https://doi.org/10.1016/0022-328x(91)86197-x.Search in Google Scholar

Sierra, M.A., Casarrubios, L., and de la Torre, M.C. (2019). Bio-organometallic derivatives of antibacterial drugs. Chem. Eur J. 25: 7232–7242, https://doi.org/10.1002/chem.201805985.Search in Google Scholar

Simionescu, C., Lixandru, T., Scutaru, D., and Vâţǎ, M. (1985). Mono- and heterodi-substituted derivatives of ferrocene; β-lactamic antibiotics. J. Organomet. Chem. 292: 269–273, https://doi.org/10.1016/0022-328x(85)87343-5.Search in Google Scholar

Simionescu, C., Lixandru, T., Tǎtaru, L., Mazilu, A., Vâtǎ, M., and Luca, S. (1983). Heterodisubstituted ferrocene derivatives; β-lactamic antibiotics. J. Organomet. Chem. 252: C43–C46, https://doi.org/10.1016/0022-328x(83)80096-5.Search in Google Scholar

Simpson, P.V., Nagel, C., Bruhn, H., and Schatzschneider, U. (2015). Antibacterial and antiparasitic activity of manganese(I) tricarbonyl complexes with ketoconazole, miconazole, and clotrimazole ligands. Organometallics 34: 3809–3815, https://doi.org/10.1021/acs.organomet.5b00458.Search in Google Scholar

Skiba, J., Rajnisz, A., de Oliveira, K.N., Ott, I., Solecka, J., and Kowalski, K. (2012). Ferrocenyl bioconjugates of ampicillin and 6-aminopenicillinic acid – synthesis, electrochemistry and biological activity. Eur. J. Med. Chem. 57: 234–239, https://doi.org/10.1016/j.ejmech.2012.09.023.Search in Google Scholar PubMed

Smith, P.W., Watkins, K., and Hewlett, A. (2012). Infection control through the ages. Am. J. Infect. Contr. 40: 35–42, https://doi.org/10.1016/j.ajic.2011.02.019.Search in Google Scholar PubMed

Snell, S.B., Gill, A.L., Haidaris, C.G., Foster, T.H., Baran, T.M., and Gill, S.R. (2021). Staphylococcus aureus tolerance and genomic response to photodynamic inactivation. mSphere 6: e00762-20, https://doi.org/10.1128/mSphere.00762-20.Search in Google Scholar PubMed PubMed Central

Stringer, T., Seldon, R., Liu, N., Warner, D.F., Tam, C., Cheng, L.W., Land, K.M., Smith, P.J., Chibale, K., and Smith, G.S. (2017). Antimicrobial activity of organometallic isonicotinyl and pyrazinyl ferrocenyl-derived complexes. Dalton Trans. 46: 9875–9885, https://doi.org/10.1039/c7dt01952a.Search in Google Scholar PubMed

Szczupak, Ł., Kowalczyk, A., Trzybiński, D., Woźniak, K., Mendoza, G., Arruebo, M., Steverding, D., Stączek, P., and Kowalski, K. (2020). Organometallic ciprofloxacin conjugates with dual action: synthesis, characterization, and antimicrobial and cytotoxicity studies. Dalton Trans. 49: 1403–1415, https://doi.org/10.1039/c9dt03948a.Search in Google Scholar PubMed

Theralase Inc (2019). Clinical trial: intravesical photodynamic therapy (PDT) in BCG refractory/intolerant non-muscle invasive bladder cancer (NMIBC) patients (Clinical trial registration No. NCT03945162). clinicaltrials.gov, Bethesda.Search in Google Scholar

Theuretzbacher, U., Bush, K., Harbarth, S., Paul, M., Rex, J.H., Tacconelli, E., and Thwaites, G.E. (2020a). Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol. 18: 286–298, https://doi.org/10.1038/s41579-020-0340-0.Search in Google Scholar PubMed

Theuretzbacher, U., Outterson, K., Engel, A., and Karlén, A. (2020b). The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 18: 275–285, https://doi.org/10.1038/s41579-019-0288-0.Search in Google Scholar PubMed PubMed Central

Tinajero-Trejo, M., Rana, N., Nagel, C., Jesse, H.E., Smith, T.W., Wareham, L.K., Hippler, M., Schatzschneider, U., and Poole, R.K. (2016). Antimicrobial activity of the manganese photoactivated carbon monoxide-releasing molecule [Mn(CO)3 (tpa-κ3 N)]+ against a pathogenic Escherichia coli that causes urinary infections. Antioxidants Redox Signal. 24: 765–780, https://doi.org/10.1089/ars.2015.6484.Search in Google Scholar PubMed PubMed Central

Wang, J., Soisson, S.M., Young, K., Shoop, W., Kodali, S., Galgoci, A., Painter, R., Parthasarathy, G., Tang, Y.S., Cummings, R., et al.. (2006). Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441: 358–361, https://doi.org/10.1038/nature04784.Search in Google Scholar PubMed

Weng, C., Shen, L., and Ang, W.H. (2020). Harnessing endogenous formate for antibacterial prodrug activation by in cellulo ruthenium-mediated transfer hydrogenation reaction. Angew. Chem. 132: 9400–9404, https://doi.org/10.1002/ange.202000173.Search in Google Scholar

Wenzel, M., Patra, M., Albrecht, D., Chen, D.Y.-K., Nicolaou, K.C., Metzler-Nolte, N., and Bandow, J.E. (2011). Proteomic signature of fatty acid biosynthesis inhibition available for in vivo mechanism-of-action studies. Antimicrob. Agents Chemother. 55: 2590–2596, https://doi.org/10.1128/aac.00078-11.Search in Google Scholar PubMed PubMed Central

Wenzel, M., Patra, M., Senges, C.H.R., Ott, I., Stepanek, J.J., Pinto, A., Prochnow, P., Vuong, C., Langklotz, S., Metzler-Nolte, N., et al.. (2013). Analysis of the mechanism of action of potent antibacterial hetero-tri-organometallic compounds: a structurally new class of antibiotics. ACS Chem. Biol. 8: 1442–1450, https://doi.org/10.1021/cb4000844.Search in Google Scholar PubMed

Wetzel, C., Lonneman, M., and Wu, C. (2021). Polypharmacological drug actions of recently FDA approved antibiotics. Eur. J. Med. Chem. 209: 112931, https://doi.org/10.1016/j.ejmech.2020.112931.Search in Google Scholar PubMed

WHO|Antibiotic resistance. (2020). [WWW document], Available at: <https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance> (Accessed 15 March 2021).Search in Google Scholar

WHO|Antimicrobial resistance. (2020). [WWW document], Available at: <http://www.who.int/mediacentre/factsheets/fs194/en/> (Accessed 20 July 2017).Search in Google Scholar

WHO|Model list of essential medicines. (2019). [WWW document], Available at: <https://apps.who.int/iris/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-2019.06-eng.pdf>.Search in Google Scholar

Yao, Z., Kahne, D., and Kishony, R. (2012). Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol. Cell 48: 705–712, https://doi.org/10.1016/j.molcel.2012.09.016.Search in Google Scholar PubMed PubMed Central

Zaman, S.B., Hussain, M.A., Nye, R., Mehta, V., Mamun, K.T., and Hossain, N. (2017). A review on antibiotic resistance: alarm bells are ringing. Cureus 9: 1–9.10.7759/cureus.1403Search in Google Scholar PubMed PubMed Central

Received: 2021-05-06
Accepted: 2021-06-15
Published Online: 2021-07-13
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2021-0253/html
Scroll to top button