Skip to main content
Log in

Spending and length of stay by tourists flying to the Canary Islands (Spain) using low-cost carriers

  • Published:
Applied Spatial Analysis and Policy Aims and scope Submit manuscript

Abstract

The AIM of this study is to examine and evaluate differences in expenditure and length of stay between tourists who use low-cost carriers and those who travel with full service providers. We consider the statistical dependence between these variables and propose a bivariate distribution that describes tourist expenditure (continuous variable) and length of stay (discrete variable) in terms of their conditional distributions. Covariates are included to reflect the factors that simultaneously affect both variables. In addition, an empirical analysis is made of data obtained by the Canary Islands Tourist Expenditure Survey. The results obtained show that our model achieves a reasonably good fit and that there are differences between LCC and FSC users regarding both expenditure and length of stay, in the use of nonhotel accommodation, as well as differences in expenditure in the case of repeated visits, and in the length of stay according to the visitors’ age, nationality and travel party size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is noteworthy that the length of stay is considered as an additional argument in the underlying utility function see, for example, Hellström (2006), and is considered as an endogenous variable. Therefore, models which employ length of stay as a regressor and estimate the corresponding equation by OLS are open to question because duration is an ’endogenous’ independent variable see also Thrane (2015).

  2. For an analysis of LCC effects on air transport demand for tourists visiting Spain, see Aguiló et al. (2007), and Rey et al. (2011).

  3. To do this, the dependence structure can be modelled using bivariate copulas or other mathematical and statistical methods such as conditional distributions or mixing distributions.

  4. See also Arnold and Strauss (1991) for an introduction to this topic, and for applied works in this setting, see Sarabia et al. (2004), Sarabia et al. (2005), and Gómez-Déniz and Calderín (2014), among others.

  5. It is noteworthy that 99.28% of the tourists in the sample stayed for less than 30 nights.

References

  • Aguiló, E., Rey, B., Roselló, J., & Torres, C. (2007). The impact of the post liberalization growth of lccs on the tourism trends in spain. In Rivista di Politica Economica (pp. 39–59).

  • Arnold, B., Castillo, E., & Sarabia, J. (1999). Conditional specification of statistical models. New York: Springer.

    Google Scholar 

  • Arnold, B., Castillo, E., & Sarabia, J. (2001). Conditionally specified distributions: an introduction (with comments and a rejoinder by the authors). Statistical Science, 16(3), 249–274.

    Article  Google Scholar 

  • Arnold, B., & Strauss, D. (1988). Pseudolikelihood estimation. Sankhya Series B, 53(21-24), 233–243.

    Google Scholar 

  • Arnold, B., & Strauss, D. (1991). Bivariate distributions with conditionals in prescribed exponential families. Journal of the Royal Statistical Society, 53, 365–375.

    Google Scholar 

  • Brooks, C. (2009). RATS Handbook to accompany introductory econometrics for finance. Cambridge: Cambridge University Press.

    Google Scholar 

  • Davis, P., & Rabinowitz, P. (1984). Methods of numerical integration. San Diego: Academic Press.

    Google Scholar 

  • Eugenio-Martin, J., & Inchausti-Sintes, F. (2016). Low-cost travel and tourism expenditures. Annals of Tourism Research, 57, 140–159.

    Article  Google Scholar 

  • Ferrer-Rosell, B., & Coenders, G. (2017). Airline type and tourist expenditure: are full service and low cost carriers converging or diverging? Journal of Air Transport Management, 63, 119–125.

    Article  Google Scholar 

  • Ferrer-Rosell, B., Coenders, G., & Martínez-García, E. (2015). Determinants in tourist expenditure composition: the role of airline type. Tourism Economics, 21, 9–32.

    Article  Google Scholar 

  • Ferrer-Rosell, B., Martínez-García, E., & Coenders, G. (2014). Package and no-frills air carriers as moderators of length of stay. Tourism Management, 42, 114–122.

    Article  Google Scholar 

  • Ferrer-Rosell, B., & Seetaram, N. (2014). Determinants of per diem tourist expenditure - the role of self-reported income. In Paper presented at the 4th Advances in Hospitality and Tourism Marketing and Management Conference (pp. 25–27).

  • Gómez-Déniz, E., & Calderín, E. (2014). Unconditional distributions obtained from conditional specifications models with applications in risk theory. Scandinavian Actuarial Journal, 7, 602–619.

    Article  Google Scholar 

  • Gómez-Déniz, E., & Pérez-Rodríguez, J. (2019). Modelling distribution of aggregate expenditure on tourism. Economic Modelling, 78, 293–308.

    Article  Google Scholar 

  • Gómez-Déniz, E., & Pérez-Rodríguez, J. (2020). Modelling dependence between daily tourist expenditure and length of stay. Tourism Economics (in press).

  • Hellström, J. (2006). A bivariate count data model for household tourism demand. Journal of Applied Econometrics, 21, 213–226.

    Article  Google Scholar 

  • Kotz, S., Balakrishnan, N., & Johnson, N. (2000). Continuous multivariate distributions. In: Vol 1: Models and Applications. New York: Wiley.

    Book  Google Scholar 

  • Martínez-García, E., & Raya, J. (2008). Length of stay for low-cost tourism. Tourism Management, 29(6), 1064–1075.

    Article  Google Scholar 

  • Moschopoulos, P., & Staniswalis, J. G. (1994). Estimation given conditionals from an exponential family. American Statistician, 48(4), 271–275.

    Google Scholar 

  • Pérez-Rodríguez, J., & Ledesma-Rodríguez, F. (2019). Unconditional quantile regression and tourism expenditure: The case of the Canary Islands. Tourism Economics (in press).

  • Raya, M., & Martínez-García, E. (2011). Nationality and low-cost trip duration. a microeconometric analysis. Journal of Air Transpor Management, 17, 168–174.

    Article  Google Scholar 

  • Rey, B., Myro, R., & Galera, A. (2011). Effect of low-cost airlines on tourism in spain. a dynamic panel data model. Journal of Air Transport Management, 17(3), 163–167.

    Article  Google Scholar 

  • Ruskeepaa, H. (2009). Mathematica navigator. Mathematics, Statistics, and Graphics, 3rd edn. Cambridge: Academic Press.

    Google Scholar 

  • Sarabia, J., Castillo, E., Pascual, M., & Sarabia, M. (2005). Mixture Lorenzv curves. Economics letters, 89, 89–94.

    Article  Google Scholar 

  • Sarabia, J., Gómez-Déniz, E., & Vázquez-Polo, F. (2004). On the use of conditional specification models in claim count distributions: an application to bonus-malus systems. ASTIN Bulletin, 34, 85–89.

    Article  Google Scholar 

  • Spanos, A. (1999). Probability theory and statistical inference. Cambridge: Cambridge University Press.

    Google Scholar 

  • Thrane, C. (2014). Modelling micro-level tourism expenditure: recommendations on the choice of independent variables, functional form and estimation technique. Tourism Economics, 20(1), 51–60.

    Article  Google Scholar 

  • Thrane, C. (2015). On the relationship between length of stay and total trip expenditures: a case study of instrumental variable (iv) regression analysis. Tourism Economics, 21(2), 357–367.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Editor and to the two anonymous referees for their valuable comments and suggestions.

Funding

Emilio Gómez-Déniz was partially funded by grant ECO2017–85577–P (Ministerio de Economía, Industria y Competitividad. Agencia Estatal de Investigación).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Gómez-Déniz.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

A.1 Marginal, conditional distributions and marginal moments

The marginal distributions of X and N are given by

$$ \begin{array}{@{}rcl@{}} X & \sim & \mathcal{G}(\alpha,\gamma),\quad \alpha>0, \beta>\gamma, \gamma > 0, \end{array} $$
(15)
$$ \begin{array}{@{}rcl@{}} N & \sim & \mathcal{S}\mathcal{N}\mathcal{B}\left( \alpha,p=\frac{\gamma}{\beta}\right),\quad \alpha>0, \beta>\gamma, \gamma > 0, \end{array} $$
(16)

where \(\mathcal {S}\mathcal {N}{\mathscr{B}}\) refers to the shifted negative binomial distribution. That is,

$$ \begin{array}{@{}rcl@{}} f_{X}(x) &=& \frac{\gamma^{\alpha}}{{{{\varGamma}}}(\alpha)}x^{\alpha-1}\exp(-\gamma x),\quad x>0, \end{array} $$
(17)
$$ \begin{array}{@{}rcl@{}} f_{N}(n) &=& {\alpha+n-2\choose n-1}\left( \frac{\gamma}{\beta}\right)^{\alpha}\left( 1-\frac{\gamma}{\beta}\right)^{n-1}, n=1,2,{\dots} \end{array} $$
(18)

The marginal distribution of N is obtained by integrating (13) with respect to x in the support \((0,+\infty )\) and the marginal distribution of X is calculated by summing (13) with respect to n in the support \(\{1,2,\dots \}\).

Furthermore, it is readily apparent that the marginal means and variances are given by

$$ \begin{array}{@{}rcl@{}} E(X) &=& \frac{\alpha}{\gamma},\quad var(X)= \frac{\alpha}{\gamma^{2}},\\ E(N) &=& 1+\frac{\alpha}{\gamma}(\beta-\gamma),\quad var(N) = \frac{\alpha\beta(\beta-\gamma)}{\gamma^{2}}, \end{array} $$

while the cross moment of X and N is

$$ \begin{array}{@{}rcl@{}} E(XN) = \frac{\alpha}{\gamma^{2}}[\beta+\alpha(\beta-\gamma)]. \end{array} $$

Simple calculations provide the covariance, given by

$$ \begin{array}{@{}rcl@{}} cov(X,N) = \frac{\alpha(\beta-\gamma)}{\gamma^{2}}, \end{array} $$

which is always positive.

The conditional distribution of X given N = n is \(\mathcal {G}(\sigma (n),\eta (n))\), where

$$ \begin{array}{@{}rcl@{}} \sigma(n) &=& \alpha+n-1,\\ \eta(n) &=& \beta \end{array} $$

and the conditional distribution of N given X = x is \(\mathcal {S}\mathcal {P}o(\varphi (x))\), with φ(x) = (βγ)x. Observe that with the assumption of these two conditional distributions expressions (1) and (2) are guaranteed.

A.2 Estimation of the parameters

Here, we derive estimators based on the moments method and on maximum likelihood for the model with and without covariates, and also provide closed-form expressions for the Fisher information matrix.

A.3 Estimation of the model without covariates

Let us first consider the case of the model with no covariates. If

$$ \begin{array}{@{}rcl@{}} (\tilde x,\tilde n)=\{(x_{1},n_{1}),(x_{2},n_{2}),\dots, (x_{t},n_{t})\} \end{array} $$

is a sample obtained from the distribution (14) and \(\bar x=(1/t){\sum }_{i=1}^{t}x_{i}\), \(\bar n=(1/t){\sum }_{i=1}^{t}n_{i}\) and \(\mu _{12}=(1/t){\sum }_{i=1}^{t}x_{i} n_{i}\) are the corresponding sample moments, some computation provides the estimators based on these sample moments, which are given by

$$ \begin{array}{@{}rcl@{}} \widehat\mu_{1} = \bar x,\quad \widehat\mu_{2}=\bar n,\quad\widehat\gamma=\frac{\widehat\mu_{2}-1}{\widehat \mu_{12}-\widehat \mu_{1} \widehat \mu_{2}}. \end{array} $$

A.4 The score vector and Fisher information matrix

We now consider the maximum likelihood method. Let Θ = (γ,μ1,μ2) be the vector of parameters to be estimated. The log-likelihood function is proportional to

$$ \begin{array}{@{}rcl@{}} \ell((\tilde x,\tilde n);{{{\varTheta}}}) & \propto & t\left[\gamma\mu_{1}(\bar x^{\ast}+\log\gamma)-\bar x^{\ast}-\log{{{\varGamma}}}(\gamma\mu_{1})\right]+\sum\limits_{i=1}^{t}n_{i}\log x_{i}\\ &&+t(\bar n-1)\left[\log(\mu_{2}-1)-\log\mu_{1}\right] -\frac{t\bar x(\mu_{2}+\gamma\mu_{1}-1)}{\mu_{1}}, \end{array} $$

where \(\bar x^{\ast }=(1/t){\sum }_{i=1}^{t}\log x_{i}\).

Thus, the normal equations which provide the estimators of the parameters are given by

$$ \begin{array}{@{}rcl@{}} \bar x^{\ast}+\log\gamma+1-\psi(\gamma\mu_{1})-\frac{\bar x}{\mu_{1}} &=& 0, \end{array} $$
(19)
$$ \begin{array}{@{}rcl@{}} {\mu_{1}^{2}}\gamma\left[\bar x^{\ast}+\log\gamma-\psi(\gamma\mu_{1})\right]-\mu_{1}(\bar n-1)+\bar x(\mu_{2}-1) &=& 0, \end{array} $$
(20)
$$ \begin{array}{@{}rcl@{}} \mu_{1}(\bar n-1)-\bar x(\mu_{2}-1) &=& 0, \end{array} $$
(21)

where ψ(z) is the digamma function, the logarithmic derivative of the Euler gamma function. Some algebra manipulation provides the maximum likelihood estimators of μ1 and μ2, which are given by \(\widehat \mu _{1}=\bar x\) and \(\widehat \mu _{2}=\bar n\). Finally, the estimator of the parameter γ is the solution of the equation

$$ \begin{array}{@{}rcl@{}} \log\gamma-\psi(\gamma\mu_{1})+\bar x^{\ast}=0, \end{array} $$

which can be solved numerically.

The second partial derivatives are as follows:

$$ \begin{array}{@{}rcl@{}} \frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\gamma^{2}} &=& \frac{t\mu_{1}}{\gamma}-t{\mu_{1}^{2}}\psi_{1}(\gamma\mu_{1}),\\ \frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\gamma\partial\mu_{1}} &=& t\left[\bar 1+x^{\ast}+\log\gamma-\psi(\gamma\mu_{1})-\gamma\mu_{1}\psi_{1}(\gamma\mu_{1})\right],\\ \frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\gamma\mu_{2}} &=& 0,\\ \frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{{\partial\mu_{1}^{2}}} &=& \frac{t(\bar n-1)}{{\mu_{1}^{2}}}-t\gamma^{2}\psi_{1}(\gamma\mu_{1})-\frac{2t\bar x}{{\mu_{1}^{3}}}(\mu_{2}-1),\\ \frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\mu_{1}\mu_{2}} &=& \frac{t\bar x}{{\mu_{1}^{2}}},\quad \frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{{\partial\mu_{2}^{2}}} = -\frac{t(\bar n-1)}{(\mu_{2}-1)^{2}}, \end{array} $$

where ψ1(⋅) is the first derivative of the digamma function.

The elements of the Fisher information matrix, \(\mathcal {J}(\widehat {{{\varTheta }}})\), are therefore

$$ \begin{array}{@{}rcl@{}} \mathcal{J}_{11}(\widehat{{{\varTheta}}}) &=& \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\gamma^{2}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}= -\frac{t\widehat\mu_{1}}{\widehat\gamma}+t{\widehat\mu_{1}^{2}}\psi_{1}(\widehat\gamma\widehat\mu_{1}),\\ \mathcal{J}_{12}(\widehat{{{\varTheta}}}) & = & \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\widehat\gamma\partial\widehat\mu_{1}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}=-\sum\limits_{i=1}^{t}\log x_{i}-t\left[(1+\log\widehat\gamma-\psi(\widehat\gamma\widehat\mu_{1})\right.\\ &&\left.-\widehat\gamma\widehat\mu_{1}\psi_{1}(\widehat\gamma\widehat\mu_{1})\right],\\ \mathcal{J}_{13}(\widehat{{{\varTheta}}}) &=& \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\widehat\gamma\widehat\mu_{2}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}= 0,\\ \mathcal{J}_{22}(\widehat{{{\varTheta}}}) &=& \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{{\partial\widehat\mu_{1}^{2}}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}= -\frac{t(\widehat\mu_{2}-1)}{{\widehat\mu_{1}^{2}}}+t\widehat\gamma^{2}\psi_{1}(\widehat\gamma\widehat\mu_{1})\\ &&+\frac{2t}{{\widehat\mu_{1}^{2}}}(\widehat\mu_{2}-1),\\ \mathcal{J}_{23}(\widehat{{{\varTheta}}}) &=& \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\widehat\mu_{1}\widehat\mu_{2}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}= -\frac{t}{\widehat\mu_{1}},\\ \mathcal{J}_{33}(\widehat{{{\varTheta}}}) &=& \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{{\partial\widehat\mu_{2}^{2}}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}=\frac{t}{(\widehat\mu_{2}-1)}. \end{array} $$

Here, \(\widehat {{{\varTheta }}}\) represents the maximum likelihood of Θ. Observe that the analytic expression for \(E({\sum }_{i=1}^{t}\log x_{i})\) is not feasible. For large t, for computational purposes, this is evaluated by ignoring the expectation operator and replacing it by \({\sum }_{i=1}^{t} \log x_{i}\). The asymptotic variance-covariance matrix of \(\widehat {{{\varTheta }}}\) is obtained by inverting the information matrix.

A.5 Estimation of the model with covariates

For the sake of simplicity, we assume η = δ and write μ1i = μ1i(δ) and μ2i = μ2i(δ). Let Θ = (γ,δ). The log-likelihood is then proportional to

$$ \begin{array}{@{}rcl@{}} \ell((\tilde x,\tilde n);{{{\varTheta}}}) &\propto& \gamma\sum\limits_{i=1}^{t} \mu_{1i}\log(\gamma x_{i})-\sum\limits_{i=1}^{t}\log{{{\varGamma}}}(\gamma\mu_{1i})\\ &&+ \sum\limits_{i=1}^{t}(n_{i}-1)\left[\log x_{i}+\log(\mu_{2i}-1)-\log\mu_{1i}\right]\\ &&-\sum\limits_{i=1}^{t}\frac{x_{i}}{\mu_{1i}}(\mu_{2i}+\gamma\mu_{1i}-1). \end{array} $$

Thus, the normal equations, for \(i=1,\dots ,t\), are given by

$$ \begin{array}{@{}rcl@{}} \frac{\partial \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial \gamma} &=& \sum\limits_{i=1}^{t} \mu_{1i}\left[1+\log(\gamma x_{i})-\psi(\gamma \mu_{1i})\right]-t\bar x=0,\\ \frac{\partial \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial \delta_{j}} &=& \gamma\sum\limits_{i=1}^{t} y_{ij}\mu_{1i}\left[\log(\gamma x_{i})-\psi(\gamma\mu_{1i})\right]\\ &&+\sum\limits_{i=1}^{t}(n_{i}-1)\left[\frac{1}{\mu_{2i}-1}\frac{\partial\mu_{2i}}{\partial \delta_{j}}-\frac{1}{\mu_{1i}}\frac{\partial\mu_{1i}}{\partial\delta_{j}}\right]\\ &&-\sum\limits_{i=1}^{t}\frac{x_{i}}{\mu_{1i}^{2}}\left[\mu_{1i}\frac{\partial\mu_{2i}}{\partial \delta_{j}}+(1-\mu_{2i})\frac{\partial\mu_{1i}}{\partial\delta_{j}}\right]=0, \end{array} $$

where \(j=1,\dots ,k\), \( \frac {\partial \mu _{1i}}{\partial \delta _{j}} = y_{ij}\mu _{1i}\) and \( \frac {\partial \mu _{2i}}{\partial \delta _{j}} = z_{ij}(\mu _{2i}-1)\). Finally, after computing the second partial derivatives we obtain the elements of the Fisher information matrix, as follows:

$$ \begin{array}{@{}rcl@{}} \mathcal{J}_{11}(\widehat{{{\varTheta}}}) &=& \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\gamma^{2}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}=-\sum\limits_{i=1}^{t} \widehat\mu_{1i}\left[\frac{1}{\widehat\gamma}-\widehat\mu_{1i}\psi_{1}(\widehat\gamma\widehat\mu_{1i})\right],\\ \mathcal{J}_{12}(\widehat{{{\varTheta}}}) &=& \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\gamma\partial\delta_{j}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}=-\sum\limits_{i=1}^{t} y_{ij}\widehat\mu_{1i}\left[1+\log(\widehat\gamma x_{i})\right.\\ &&\left.-\psi(\widehat\gamma\widehat\mu_{1i})-\widehat\gamma\widehat\mu_{1i} \psi_{1}(\widehat\gamma\widehat\mu_{1i})\right],\\ \mathcal{J}_{22}(\widehat{{{\varTheta}}}) &=& \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{{\partial\delta_{j}^{2}}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}=-\sum\limits_{i=1}^{t} y_{ij}^{2}\mu_{1i}\widehat\gamma\left[\log(\widehat\gamma x_{i})\right.\\ &&\left.-\psi(\widehat\gamma \widehat\mu_{1i})\right]+y_{ij}^{2}\widehat\mu_{1i}^{2}\left[-\widehat\gamma^{2}\psi_{1}(\widehat\gamma \widehat\mu_{1i})+\frac{1-\mu_{2i}}{\mu_{1i}}\right]+y_{ij}^{2}(\mu_{2i}-1),\\ \mathcal{J}_{23}(\widehat{{{\varTheta}}}) &=& \left.E\left( -\frac{\partial^{2} \ell((\tilde x,\tilde n);{{{\varTheta}}})}{\partial\delta_{j}\partial\delta_{l}}\right)\right|_{{{{\varTheta}}}=\widehat{{{\varTheta}}}}=-\sum\limits_{i=1}^{t} y_{ij}z_{il}\widehat\gamma\widehat\mu_{1i}\left[\log(\widehat\gamma x_{i})-\psi(\widehat\gamma\widehat\mu_{1i})\right]\\ &&+y_{ij}z_{il}\widehat\mu_{1i}^{2}\left[-\widehat\gamma^{2}\psi_{1}(\widehat\gamma\widehat\mu_{1i})+ \frac{1-\widehat\mu_{2i}}{\widehat\mu_{1i}^{2}}\right]+z_{il}^{2}(\widehat\mu_{2i}-1), j\neq l. \end{array} $$

Standard errors can be obtained conventionally from the inverse of the matrix.

A.6 Approximation of the digamma function

A practical approach to the digamma function is given by the following expression, which is well known in the statistical literature,

$$ \begin{array}{@{}rcl@{}} \log\left( {{{\varGamma}}}(z)\right)\approx \frac{1}{2}\log(2\pi)+\left( z-\frac{1}{2}\right) \log(z)-z+\frac{z}{2}\log\left( z\sinh\left( \frac{1}{z}\right)\right). \end{array} $$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Déniz, E., Pérez-Rodríguez, J.V. Spending and length of stay by tourists flying to the Canary Islands (Spain) using low-cost carriers. Appl. Spatial Analysis 14, 631–658 (2021). https://doi.org/10.1007/s12061-020-09370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12061-020-09370-3

Keywords

Navigation