Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Development of Apigenin-Loaded Niosomes Using Ecological Probe Sonication Technique for Enhanced Oral Delivery: Application of Box- Behnken Design

Author(s): Md. Ali Mujtaba*

Volume 23, Issue 6, 2022

Published on: 11 August, 2021

Page: [882 - 893] Pages: 12

DOI: 10.2174/1389201022666210709143525

Price: $65

Abstract

Background: Apigenin (APG), a natural bioactive flavonoid has multiple pharmacological effects. However, its poor aqueous solubility hinders its clinical benefits.

Objective and Methods: The work aimed to develop novel apigenin-loaded niosomes (APG-NIO) with ecological probe sonication techniques. The formulation was statistically optimized by Box-Behnken design (BBD) and the independent variables were selected as Span 80(X1), Poloxamer 188(X2), and Tween 80(X3) at three levels, and the dependent variables were identified as: particle size (Y1), polydispersity index (Y2), and % entrapment efficiency (Y3). The formulation was characterized for various parameters such as vesicle shape, size, PDI, %EE, solubility, in vitro drug release, and antioxidant potential.

Results: The optimized APG-NIO formulation was found to have a spherical shape with homogenous distribution and a low polydispersity index. It has a particle size of 425.77 nm, zeta potential -17.1±0.9 mV, and % EE of 89.63. The aqueous solubility of APG-NIO was found approximately 45 times higher than that of pure APG. The formulation showed a higher drug release rate as compared to pure APG in phosphate buffer pH 7.4 and followed the Higuchi release model with a non-Fickian transport mechanism. The stability was found at 4°C for 3 months. The antioxidant potential of APG-NIO was significantly increased in comparison to the pure drug suspension in the DPPH• assay.

Conclusion: These findings suggest that the probe sonication technique is an alternative, cost-effective, simple, and green method for the development of niosomes, and BBD is a useful optimization tool for identifying the effect of formulation variables.

Keywords: Apigenin, niosomes, probe sonication, box-behnken design, antioxidant, oral delivery.

Graphical Abstract
[1]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[2]
Ali, F. Rahul; Naz, F.; Jyoti, S.; Siddique, Y. H. Health functionality of apigenin: A review. Int. J. Food Prop., 2017, 20, 1197-1238.
[http://dx.doi.org/10.1080/10942912.2016.1207188]
[3]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Garg, V.K.; Buttar, H.S.; Setzer, W.N.; Sethi, G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J. Funct. Foods, 2018, 48, 457-471.
[http://dx.doi.org/10.1016/j.jff.2018.07.037]
[4]
Telange, D.R.; Patil, A.T.; Pethe, A.M.; Fegade, H.; Anand, S.; Dave, V.S. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur. J. Pharm. Sci., 2017, 108, 36-49.
[http://dx.doi.org/10.1016/j.ejps.2016.12.009] [PMID: 27939619]
[5]
Khan, M.I.; Madni, A.; Peltonen, L. Development and in vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein. Eur. J. Pharm. Sci., 2016, 95, 88-95.
[http://dx.doi.org/10.1016/j.ejps.2016.09.002] [PMID: 27600819]
[6]
Mukherjee, B.; Patra, B.; Layek, B.; Mukherjee, A. Sustained release of acyclovir from nano-liposomes and nano-niosomes: An in vitro study. Int. J. Nanomedicine, 2007, 2(2), 213-225.
[PMID: 17722549]
[7]
Moghddam, S.R.M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Mater. Sci. Eng. C, 2016, 69, 789-797.
[http://dx.doi.org/10.1016/j.msec.2016.07.043] [PMID: 27612773]
[8]
Mehta, S.K.; Jindal, N. Tyloxapol niosomes as prospective drug delivery module for antiretroviral drug nevirapine. AAPS PharmSciTech, 2015, 16(1), 67-75.
[http://dx.doi.org/10.1208/s12249-014-0183-y] [PMID: 25182386]
[9]
Ravalika, V.; Sailaja, A.K. Formulation and evaluation of etoricoxib niosomes by thin film hydration technique and ether injection method. Nano Biomed. Eng., 2017, 9, 242-248.
[http://dx.doi.org/10.5101/nbe.v9i3.p242-248]
[10]
Kanaani, L.; Mazloumi Tabrizi, M.; Akbarzadeh Khiyavi, A.; Javadi, I. Improving the efficacy of cisplatin using niosome nanoparticles against human breast cancer cell line BT-20 : An in vitro study. Asian Pac J Cancer Biol., 2017, 2, 25-26.
[http://dx.doi.org/10.31557/apjcb.2017.2.2.27-29]
[11]
Khan, D.H.; Bashir, S.; Figueiredo, P.; Santos, H.A.; Khan, M.I.; Peltonen, L. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. J. Drug Deliv. Sci. Technol., 2019, 50, 27-33.
[http://dx.doi.org/10.1016/j.jddst.2019.01.012]
[12]
Khan, M.I.; Madni, A.; Hirvonen, J.; Peltonen, L. Ultrasonic processing technique as a green preparation approach for diacerein-loaded niosomes. AAPS PharmSciTech, 2017, 18(5), 1554-1563.
[http://dx.doi.org/10.1208/s12249-016-0622-z] [PMID: 27604883]
[13]
Khan, D.H.; Bashir, S.; Khan, M.I.; Figueiredo, P.; Santos, H.A.; Peltonen, L. Formulation optimization and in vitro characterization of rifampicin and ceftriaxone dual drug loaded niosomes with high energy probe sonication technique. J. Drug Deliv. Sci. Technol., 2020, 58, 101763.
[http://dx.doi.org/10.1016/j.jddst.2020.101763]
[14]
Box, G.E.P.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technometrics, 1960, 2, 455-475.
[http://dx.doi.org/10.1080/00401706.1960.10489912]
[15]
Mujtaba, A.; Ali, M.; Kohli, K. Formulation of extended release cefpodoxime proxetil chitosan-alginate beads using quality by design approach. Int. J. Biol. Macromol., 2014, 69, 420-429.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.066] [PMID: 24915550]
[16]
Soni, K.; Mujtaba, A.; Akhter, M.H.; Zafar, A.; Kohli, K. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. J. Microencapsul., 2020, 37(2), 91-108.
[http://dx.doi.org/10.1080/02652048.2019.1701114] [PMID: 31810417]
[17]
Mujtaba, M.A.; Alotaibi, N.M. Chitosan-sodium alginate nanoparticle as a promising approach for oral delivery of rosuvastatin calcium: Formulation, optimization and in vitro characterization. J. Pharm. Res. Int., 2020, 32, 50-56.
[http://dx.doi.org/10.9734/jpri/2020/v32i130394]
[18]
Caddeo, C.; Pucci, L.; Gabriele, M.; Carbone, C.; Fernàndez-Busquets, X.; Valenti, D.; Pons, R.; Vassallo, A.; Fadda, A.M.; Manconi, M. Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int. J. Pharm., 2018, 538(1-2), 40-47.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.047] [PMID: 29294324]
[19]
Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Jafar, M.; Hassan, M.Z.; Hussain, A.; Ahad, A.; Mahdi, W. Host-guest complex of β-cyclodextrin and pluronic f127 with luteolin: Physicochemical characterization, anti-oxidant activity and molecular modeling studies. J. Drug Deliv. Sci. Technol., 2020, 55, 101356.
[http://dx.doi.org/10.1016/j.jddst.2019.101356]
[20]
Mujtaba, A.; Hassan, K. Nanotechnology based approach to enhance the potential of chemopreventive agent berberine hydrochloride in cancer therapy. Int J Biol Pharm Allied Sci, 2017, 6, 1-23.
[21]
Mujtaba, A.; Ali, M.; Kohli, K. Statistical optimization and characterization of pH-independent extended-release drug delivery of cefpodoxime proxetil using Box-Behnken design. Chem. Eng. Res. Des., 2014, 92, 156-165.
[http://dx.doi.org/10.1016/j.cherd.2013.05.032]
[22]
Yadav, P.; Rastogi, V.; Verma, A. Application of Box–Behnken design and desirability function in the development and optimization of self-nanoemulsifying drug delivery system for enhanced dissolution of ezetimibe. Futur. J. Pharm. Sci., 2020, 6, 7.
[http://dx.doi.org/10.1186/s43094-020-00023-3]
[23]
Sezgin-Bayindir, Z.; Yuksel, N. Investigation of formulation variables and excipient interaction on the production of niosomes. AAPS PharmSciTech, 2012, 13(3), 826-835.
[http://dx.doi.org/10.1208/s12249-012-9805-4] [PMID: 22644706]
[24]
Wu, W.; Zu, Y.; Wang, L.; Wang, L.; Wang, H.; Li, Y.; Wu, M.; Zhao, X.; Fu, Y. Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique. Drug Deliv., 2017, 24(1), 1713-1720.
[http://dx.doi.org/10.1080/10717544.2017.1399302] [PMID: 29115900]
[25]
Abdelbary, G.A.; Amin, M.M.; Zakaria, M.Y. Ocular ketoconazole-loaded proniosomal gels: Formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv., 2017, 24(1), 309-319.
[http://dx.doi.org/10.1080/10717544.2016.1247928] [PMID: 28165809]
[26]
Al Shaal, L.; Shegokar, R.; Müller, R.H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int. J. Pharm., 2011, 420(1), 133-140.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.018] [PMID: 21871547]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy