Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 1, 2021

New insights into neural networks of error monitoring and clinical implications: a systematic review of ERP studies in neurological diseases

  • Sabrina Lenzoni ORCID logo EMAIL logo , Joshua Baker , Alexander L. Sumich and Daniel C. Mograbi

Abstract

Error monitoring allows for the efficient performance of goal-directed behaviors and successful learning. Furthermore, error monitoring as a metacognitive ability may play a crucial role for neuropsychological interventions, such as rehabilitation. In the past decades, research has suggested two electrophysiological markers for error monitoring: the error-related negativity (ERN) and the error positivity (Pe), thought to reflect, respectively, error detection and error awareness. Studies on several neurological diseases have investigated the alteration of the ERN and the Pe, but these findings have not been summarized. Accordingly, a systematic review was conducted to understand what neurological conditions present alterations of error monitoring event-related potentials and their relation with clinical measures. Overall, ERN tended to be reduced in most neurological conditions while results related to Pe integrity are less clear. ERN and Pe were found to be associated with several measures of clinical severity. Additionally, we explored the contribution of different brain structures to neural networks underlying error monitoring, further elaborating on the domain-specificity of error processing and clinical implications of findings. In conclusion, electrophysiological signatures of error monitoring could be reliable measures of neurological dysfunction and a robust tool in neuropsychological rehabilitation.


Corresponding author: Sabrina Lenzoni, Department of Psychology, Pontifical University of Rio de Janeiro, 22451-900, Rio de Janeiro, Brazil; and Department of Psychology, Nottingham Trent University, NG1 4FQ, Nottingham, UK, E-mail:

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Agnew, S.K. and Morris, R.G. (1998). The heterogeneity of anosognosia for memory impairment in Alzheimer’s disease: a review of the literature and a proposed model. Aging Ment. Health 2: 7–19, https://doi.org/10.1080/13607869856876.Search in Google Scholar

Alexander, W.H. and Brown, J.W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nat. Neurosci. 14: 1338–1344, https://doi.org/10.1038/nn.2921.Search in Google Scholar

Amanzio, M., Bartoli, M., Cipriani, G.E., and Palermo, S. (2020). Executive dysfunction and reduced self-awareness in patients with neurological disorders . A Mini-Review. Front. Psychol. 11: 1167 https://doi.org/10.3389/fpsyg.2020.01697.Search in Google Scholar

Azouvi, P., Arnould, A., Dromer, E., and Vallat-Azouvi, C. (2017). Neuropsychology of traumatic brain injury: an expert overview. Rev. Neurol. 173: 461–472, https://doi.org/10.1016/j.neurol.2017.07.006.Search in Google Scholar

Bates, A.T., Kiehl, K.A., Laurens, K.R., and Liddle, P.F. (2002). Error-related negativity and correct response negativity in schizophrenia. Clin. Neurophysiol. 113: 1454–1463, https://doi.org/10.1016/s1388-2457(02)00154-2.Search in Google Scholar

Bellon, E., Fias, W., and De Smedt, B. (2020). Metacognition across domains: is the association between arithmetic and metacognitive monitoring domain-specific? PloS One 15: e0229932, https://doi.org/10.1371/journal.pone.0229932.Search in Google Scholar PubMed PubMed Central

Beste, C., Saft, C., Andrich, J., Gold, R., and Falkenstein, M. (2006). Error processing in Huntington’s disease. PloS One 1: e86, https://doi.org/10.1371/journal.pone.0000086.Search in Google Scholar PubMed PubMed Central

Beste, C., Saft, C., Konrad, C., Andrich, J., Habbel, A., Schepers, I., Jansen, A., Pfleiderer, B., and Falkenstein, M. (2008). Levels of error processing in Huntington’s disease: a combined study using event-related potentials and voxel-based morphometry. Hum. Brain Mapp. 29: 121–130, https://doi.org/10.1002/hbm.20374.Search in Google Scholar PubMed PubMed Central

Beste, C., Saft, C., Yordanova, J., Andrich, J., Gold, R., Falkenstein, M., and Kolev, V. (2007). Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington’s disease? Neuropsychologia 45: 2922–2930, https://doi.org/10.1016/j.neuropsychologia.2007.06.004.Search in Google Scholar PubMed

Beste, C., Willemssen, R., Saft, C., and Falkenstein, M. (2009). Error processing in normal aging and in basal ganglia disorders. Neuroscience 159: 143–149, https://doi.org/10.1016/j.neuroscience.2008.12.030.Search in Google Scholar PubMed

Biehl, S.C., Dresler, T., Reif, A., Scheuerpflug, P., Deckert, J., and Herrmann, M.J. (2011). Dopamine transporter (DAT1) and dopamine receptor D4 (DRD4) genotypes differentially impact on electrophysiological correlates of error processing. PloS One 6: e28396, https://doi.org/10.1371/journal.pone.0028396.Search in Google Scholar PubMed PubMed Central

Bigler, E. (2001). The lesion(s) in traumatic brain injury: implications for clinical neuropsychology. Arch. Clin. Neuropsychol. 16: 95–131, https://doi.org/10.1093/arclin/16.2.95.Search in Google Scholar

Boksem, M.A.S., Meijman, T.F., and Lorist, M.M. (2006). Mental fatigue, motivation and action monitoring. Biol. Psychol. 72: 123–132, https://doi.org/10.1016/j.biopsycho.2005.08.007.Search in Google Scholar PubMed

Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S., and Cohen, J.D. (2001). Conflict monitoring and cognitive control. Psychol. Rev. 108: 624–652, https://doi.org/10.1037/0033-295x.108.3.624.Search in Google Scholar PubMed

Brázdil, M., Roman, R., Daniel, P., and Rektor, I. (2005). Intracerebral error-related negativity in a simple Go/NoGo task. J. Psychophysiol. 19: 244–255, https://doi.org/10.1027/0269-8803.19.4.244.Search in Google Scholar

Chapman, S., Colvin, L.E., Vuorre, M., Cocchini, G., Metcalfe, J., Huey, E.D., and Cosentino, S. (2018). Cross domain self-monitoring in anosognosia for memory loss in Alzheimer’s disease. Cortex 101: 221–233, https://doi.org/10.1016/j.cortex.2018.01.019.Search in Google Scholar PubMed PubMed Central

Chastain, C.A., Oyoyo, U.E., Zipperman, M., Joo, E., Ashwal, S., Shutter, L.A., and Tong, K.A. (2009). Predicting outcomes of traumatic brain injury by imaging modality and injury distribution. J. Neurotrauma 26: 1183–1196, https://doi.org/10.1089/neu.2008.0650.Search in Google Scholar PubMed

Chavoix, C. and Insausti, R. (2017). Self-awareness and the medial temporal lobe in neurodegenerative diseases. Neurosci. Biobehav. Rev. 78: 1–12, https://doi.org/10.1016/j.neubiorev.2017.04.015.Search in Google Scholar PubMed

Chen, W.G., Schloesser, D., Arensdorf, A.M., Simmons, J.M., Cui, C., Valentino, R., Gnadt, J.W., Nielsen, L., Hillaire-Clarke, C.S., Spruance, V., et al.. (2021). The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 44: 3–16, https://doi.org/10.1016/j.tins.2020.10.007.Search in Google Scholar PubMed PubMed Central

Clare, L. and Jones, R.S.P. (2008). Errorless learning in the rehabilitation of memory impairment: a critical review. Neuropsychol. Rev. 18: 1–23, https://doi.org/10.1007/s11065-008-9051-4.Search in Google Scholar PubMed

Clayson, P.E., Carbine, K.A., and Larson, M.J. (2020). A registered report of error-related negativity and reward positivity as biomarkers of depression: P-Curving the evidence. Int. J. Psychophysiol. 150: 50–72, https://doi.org/10.1016/j.ijpsycho.2020.01.005.Search in Google Scholar PubMed

De Beaumont, L., Beauchemin, M., Beaulieu, C., and Jolicoeur, P. (2013). Long-term attenuated electrophysiological response to errors following multiple sports concussions. J. Clin. Exp. Neuropsychol. 35: 596–607, https://doi.org/10.1080/13803395.2013.800023.Search in Google Scholar PubMed

Debener, S. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci. 25: 11730–11737, https://doi.org/10.1523/jneurosci.3286-05.2005.Search in Google Scholar PubMed PubMed Central

Dehaene, S. (2018). The error-related negativity, self-monitoring, and consciousness. perspect. Psychol. Sci. 13: 161–165, https://doi.org/10.1177/1745691618754502.Search in Google Scholar PubMed

Dehaene, S., Posner, M.I., and Tucker, D.M. (1994). Localization of a neural system for error detection and compensation. Psychol. Sci. 5: 303–305, https://doi.org/10.1111/j.1467-9280.1994.tb00630.x.Search in Google Scholar

Dentakos, S., Saoud, W., Ackerman, R., and Toplak, M.E. (2019). Does domain matter? Monitoring accuracy across domains. Metacognition Learn. 14: 413–436, https://doi.org/10.1007/s11409-019-09198-4.Search in Google Scholar

Di Gregorio, F., Maier, M.E., and Steinhauser, M. (2018). Errors can elicit an error positivity in the absence of an error negativity: evidence for independent systems of human error monitoring. Neuroimage 172: 427–436, https://doi.org/10.1016/j.neuroimage.2018.01.081.Search in Google Scholar PubMed

Dockree, P.M., Tarleton, Y.M., Carton, S., and FitzGerald, M.C.C. (2015). Connecting self-awareness and error-awareness in patients with traumatic brain injury. J. Int. Neuropsychol. Soc. 21: 473–482, https://doi.org/10.1017/s1355617715000594.Search in Google Scholar

Donchin, E. and Coles, M.G.H. (1988). Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11: 357, https://doi.org/10.1017/s0140525x00058027.Search in Google Scholar

Dunn, J. and Clare, L. (2007). Learning face–name associations in early-stage dementia: comparing the effects of errorless learning and effortful processing. Neuropsychol. Rehabil. 17: 735–754, https://doi.org/10.1080/09602010701218317.Search in Google Scholar PubMed

Duyao, M., Ambrose, C., Myers, R., Novelletto, A., Persichetti, F., Frontali, M., Folstein, S., Ross, C., Franz, M., Abbott, M., et al.. (1993). Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat. Genet. 4: 387–392.10.1038/ng0893-387Search in Google Scholar

Ehlhardt, L.A., Sohlberg, M.M., Kennedy, M., Coelho, C., Ylvisaker, M., Turkstra, L., and Yorkston, K. (2008). Evidence-based practice guidelines for instructing individuals with neurogenic memory impairments: what have we learned in the past 20 years? Neuropsychol. Rehabil. 18: 300–342, https://doi.org/10.1080/09602010701733190.Search in Google Scholar

Endrass, T., Reuter, B., and Kathmann, N. (2007). ERP correlates of conscious error recognition: aware and unaware errors in an antisaccade task. Eur. J. Neurosci. 26: 1714–1720, https://doi.org/10.1111/j.1460-9568.2007.05785.x.Search in Google Scholar

Eriksen, B.A. and Eriksen, C.W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophysiology 16: 143–149, https://doi.org/10.3758/bf03203267.Search in Google Scholar

Falkenstein, M., Hohnsbein, J., Hoormann, J., and Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78: 447–455, https://doi.org/10.1016/0013-4694(91)90062-9.Search in Google Scholar

Falkenstein, M., Hielscher, H., Dziobek, I., Schwarzenau, P., Hoormann, J., Sundermann, B., and Hohnsbein, J. (2001). Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12: 157–161, https://doi.org/10.1097/00001756-200101220-00039.Search in Google Scholar PubMed

Falkenstein, M., Willemssen, R., Hohnsbein, J., and Hielscher, H. (2005). Error processing in Parkinson’s disease. J. Psychophysiol. 19: 305–310, doi:https://doi.org/10.1027/0269-8803.19.4.305.Search in Google Scholar

Fischer, A.G., Klein, T.A., and Ullsperger, M. (2017). Comparing the error-related negativity across groups: the impact of error- and trial-number differences. Psychophysiology 54: 998–1009, https://doi.org/10.1111/psyp.12863.Search in Google Scholar PubMed

Forster, S.E., Zirnheld, P., Shekhar, A., Steinhauer, S.R., O’Donnell, B.F., and Hetrick, W.P. (2017). Event-related potentials reflect impaired temporal interval learning following haloperidol administration. Psychopharmacology 234: 2545–2562, https://doi.org/10.1007/s00213-017-4645-2.Search in Google Scholar PubMed

Foti, D., Kotov, R., Bromet, E., and Hajcak, G. (2012). Beyond the broken error-related negativity: functional and diagnostic correlates of error processing in psychosis. Biol. Psychiatr. 71: 864–872, https://doi.org/10.1016/j.biopsych.2012.01.007.Search in Google Scholar PubMed PubMed Central

Gehring, W.J., Goss, B., Coles, M.G.H., Meyer, D.E., and Donchin, E. (1993). A neural system for error detection and compensation. Psychol. Sci. 4: 385–390, https://doi.org/10.1111/j.1467-9280.1993.tb00586.x.Search in Google Scholar

Gehring, W.J. and Knight, R.T. (2000). Prefrontal-cingulate interactions in action monitoring. Nat. Neurosci. 3: 516–520, https://doi.org/10.1038/74899.Search in Google Scholar

Green, R.E., Colella, B., Christensen, B., Johns, K., Frasca, D., Bayley, M., and Monette, G. (2008). Examining moderators of cognitive recovery trajectories after moderate to severe traumatic brain injury. Arch. Phys. Med. Rehabil. 89: S16–S24, https://doi.org/10.1016/j.apmr.2008.09.551.Search in Google Scholar

Hallett, P.E. (1978). Primary and secondary saccades to goals defined by instructions. Vis. Res. 18: 1279–1296, https://doi.org/10.1016/0042-6989(78)90218-3.Search in Google Scholar

Ham, T.E., Bonnelle, V., Hellyer, P., Jilka, S., Robertson, I.H., Leech, R., and Sharp, D.J. (2014). The neural basis of impaired self-awareness after traumatic brain injury. Brain 137: 586–597, https://doi.org/10.1093/brain/awt350.Search in Google Scholar PubMed PubMed Central

Harsay, H.A., Spaan, M., Wijnen, J.G., and Ridderinkhof, K.R. (2012). Error awareness and salience processing in the oddball task: shared neural mechanisms. Front. Hum. Neurosci. 6: 246, https://doi.org/10.3389/fnhum.2012.00246.Search in Google Scholar PubMed PubMed Central

Hartmann, A. and Millet, B. (2018). Repetitive movements and behaviors in neurological and psychiatric practice: distinctions and similarities between Tourette disorder and obsessive–compulsive disorder. Rev. Neurol. (Paris) 174: 199–202, https://doi.org/10.1016/j.neurol.2018.01.364.Search in Google Scholar PubMed

Haslam, C., and Kessels, R.P.C. (2018). Errorless learning in neuropsychological rehabilitation. In: Haslam, C., and Kessels, R.P.C. (Eds.), Errorless Learning in neuropsychological rehabilitation: mechanisms, Efficacy and application. Routledge, London.10.4324/9781315660738Search in Google Scholar

Hester, R., Foxe, J.J., Molholm, S., Shpaner, M., and Garavan, H. (2005). Neural mechanisms involved in error processing: a comparison of errors made with and without awareness. Neuroimage 27: 602–608, https://doi.org/10.1016/j.neuroimage.2005.04.035.Search in Google Scholar PubMed

Higgins, J.P.T., Thomas, J., Chandler, J, Cumpston, M., Li, T., and Welch, V.A. (2020). Cochrane Handbook for systematic reviews of interventions version 6.1 (updated September 2020). Cochrane.Search in Google Scholar

Holroyd, C.B. and Coles, M.G.H. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109: 679–709, https://doi.org/10.1037/0033-295x.109.4.679.Search in Google Scholar

Holroyd, C.B., Praamstra, P., Plat, E., and Coles, M.G.H. (2002). Spared error-related potentials in mild to moderate Parkinson’s disease. Neuropsychologia 40: 2116–2124, https://doi.org/10.1016/s0028-3932(02)00052-0.Search in Google Scholar

Hu, N., Hu, X., Xu, Z., Li, Q., Long, Q., Gu, Y., and Chen, A. (2019). Temporal dynamic modulation of acute stress on error processing in healthy males. Psychophysiology 56: e13398, https://doi.org/10.1111/psyp.13398.Search in Google Scholar PubMed

Ito, J. and Kitagawa, J. (2005). Error processing in patients with Alzheimer’s disease. Pathophysiology 12: 97–101, https://doi.org/10.1016/j.pathophys.2005.02.003.Search in Google Scholar PubMed

Ito, J. and Kitagawa, J. (2006). Performance monitoring and error processing during a lexical decision task in patients with Parkinson’s disease. J. Geriatr. Psychiatr. Neurol. 19: 46–54, https://doi.org/10.1177/0891988705284716.Search in Google Scholar PubMed

Johannes, S., Wieringa, B.M., Nager, W., Müller-Vahl, K.R., Dengler, R., and Münte, T.F. (2002). Excessive action monitoring in Tourette syndrome. J. Neurol. 249: 961–966, https://doi.org/10.1007/s00415-002-0657-9.Search in Google Scholar PubMed

Kelley, E., Sullivan, C., Loughlin, J.K., Hutson, L., Dahdah, M.N., Long, M.K., Schwab, K.A., and Poole, J.H. (2014). Self-awareness and neurobehavioral outcomes, 5 years or more after moderate to severe brain injury. J. Head Trauma Rehabil. 29: 147–152, https://doi.org/10.1097/htr.0b013e31826db6b9.Search in Google Scholar PubMed

Klein, T.A., Ullsperger, M., and Danielmeier, C. (2013). Error awareness and the insula: links to neurological and psychiatric diseases. Front. Hum. Neurosci. 7, https://doi.org/10.3389/fnhum.2013.00014.Search in Google Scholar PubMed PubMed Central

Kramer, U.M., Cunillera, T., Camara, E., Marco-Pallares, J., Cucurell, D., Nager, W., Bauer, P., Schule, R., Schols, L., Rodriguez-Fornells, A., et al.. (2007). The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. J. Neurosci. 27: 14190–14198, https://doi.org/10.1523/jneurosci.4229-07.2007.Search in Google Scholar PubMed PubMed Central

Krönke, K.-M., Wolff, M., Mohr, H., Kräplin, A., Smolka, M.N., Bühringer, G., and Goschke, T. (2018). Monitor yourself! Deficient error-related brain activity predicts real-life self-control failures. Cognit. Affect Behav. Neurosci. 18: 622–637, https://doi.org/10.3758/s13415-018-0593-5.Search in Google Scholar PubMed

Krönke, K.-M., Wolff, M., Shi, Y., Kräplin, A., Smolka, M.N., Bühringer, G., and Goschke, T. (2020). Functional connectivity in a triple-network saliency model is associated with real-life self-control. Neuropsychologia 149: 107667, https://doi.org/10.1016/j.neuropsychologia.2020.107667.Search in Google Scholar PubMed

Larson, M.J., Clayson, P.E., and Farrer, T.J. (2012). Performance monitoring and cognitive control in individuals with mild traumatic brain injury. J. Int. Neuropsychol. Soc. 18: 323–333, https://doi.org/10.1017/s1355617711001779.Search in Google Scholar

Larson, M.J., Kaufman, D.A.S., Kellison, I.L., Schmalfuss, I.M., and Perlstein, W.M. (2009). Double jeopardy! the additive consequences of negative affect on performance-monitoring decrements following traumatic brain injury. Neuropsychology 23: 433–444, https://doi.org/10.1037/a0015723.Search in Google Scholar

Larson, M.J., Kaufman, D.A.S., Schmalfuss, I.M., and Perlstein, W.M. (2007). Performance monitoring, error processing, and evaluative control following severe TBI. J. Int. Neuropsychol. Soc. 13: 961–971, https://doi.org/10.1017/s1355617707071305.Search in Google Scholar

Lenzoni, S., Morris, R.G., and Mograbi, D.C. (2020). The petrified self 10 years after: current evidence for mnemonic anosognosia. Front. Psychol. 11: 465, https://doi.org/10.3389/fpsyg.2020.00465.Search in Google Scholar

Leung, D.P.K. and Liu, K.P.Y. (2011). Review of self-awareness and its clinical application in stroke rehabilitation. Int. J. Rehabil. Res. 34: 187–195, https://doi.org/10.1097/mrr.0b013e3283487f31.Search in Google Scholar

Logan, D.M., Hill, K.R., and Larson, M.J. (2015). Cognitive control of conscious error awareness: error awareness and error positivity (Pe) amplitude in moderate-to-severe traumatic brain injury (TBI). Front. Hum. Neurosci. 9: 397, doi:https://doi.org/10.3389/fnhum.2015.00397.Search in Google Scholar

López-Góngora, M., Escartín, A., Martínez-Horta, S., Fernández-Bobadilla, R., Querol, L., Romero, S., Mañanas, M.À., and Riba, J. (2015). Neurophysiological evidence of compensatory brain mechanisms in early-stage multiple sclerosis. PloS One 10: e0136786, https://doi.org/10.1371/journal.pone.0136786.Search in Google Scholar

Maier, M.E., Di Gregorio, F., Muricchio, T., and Di Pellegrino, G. (2015). Impaired rapid error monitoring but intact error signaling following rostral anterior cingulate cortex lesions in humans. Front. Hum. Neurosci. 9: 339, https://doi.org/10.3389/fnhum.2015.00339.Search in Google Scholar

Mathalon, D.H., Bennet, A., Askari, N., Gray, E.M., Rosenbloom, M.J., and Ford, J.M. (2003). Response-monitoring dysfunction in aging and Alzheimer’s disease: An event-related potential study. Neurobiol. Aging 24: 675–685, doi:https://doi.org/10.1016/S0197-4580(02)00154-9.Search in Google Scholar

Mathewson, K.J., Dywan, J., and Segalowitz, S.J. (2005). Brain bases of error-related ERPs as influenced by age and task. Biol. Psychol. 70: 88–104, https://doi.org/10.1016/j.biopsycho.2004.12.005.Search in Google Scholar PubMed

Mazancieux, A., Souchay, C., Casez, O., and Moulin, C.J.A. (2019). Metacognition and self-awareness in multiple sclerosis. Cortex 111: 238–255, https://doi.org/10.1016/j.cortex.2018.11.012.Search in Google Scholar PubMed

Medley, A.R. and Powell, T. (2010). Motivational Interviewing to promote self-awareness and engagement in rehabilitation following acquired brain injury: a conceptual review. Neuropsychol. Rehabil. 20: 481–508, https://doi.org/10.1080/09602010903529610.Search in Google Scholar PubMed

Meyer, A. (2016). Developing psychiatric biomarkers: a review focusing on the error-related negativity as a biomarker for anxiety. Curr. Treat. Options Psychiatr. 3: 356–364, https://doi.org/10.1007/s40501-016-0094-5.Search in Google Scholar

Minzenberg, M.J., Gomes, G.C., Yoon, J.H., Swaab, T.Y., and Carter, C.S. (2014). Disrupted action monitoring in recent-onset psychosis patients with schizophrenia and bipolar disorder. Psychiatry Res. Neuroimaging. 221: 114–121, https://doi.org/10.1016/j.pscychresns.2013.11.003.Search in Google Scholar PubMed PubMed Central

Mograbi, D.C. and Morris, R.G. (2014). The developing concept of implicit awareness: a rejoinder and reply to commentaries on Mograbi and Morris (2013). Cognit. Neurosci. 5: 138–142, https://doi.org/10.1080/17588928.2014.905522.Search in Google Scholar PubMed

Mograbi, D.C. and Morris, R.G. (2018). Anosognosia. Cortex 103: 385–386, https://doi.org/10.1016/j.cortex.2018.04.001.Search in Google Scholar PubMed

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Br. Med. J. 339: b2535–b2535.Search in Google Scholar

Morales, J., Lau, H., and Fleming, S.M. (2018). Domain-general and domain-specific patterns of activity supporting metacognition in human prefrontal cortex. J. Neurosci. 38: 3534–3546, https://doi.org/10.1523/jneurosci.2360-17.2018.Search in Google Scholar

Morris, R.G. and Mograbi, D.C. (2013). Anosognosia, autobiographical memory and self knowledge in Alzheimer’s disease. Cortex 49: 1553–1565, https://doi.org/10.1016/j.cortex.2012.09.006.Search in Google Scholar PubMed

Morris, S.E., Yee, C.M., and Nuechterlein, K.H. (2006). Electrophysiological analysis of error monitoring in schizophrenia. J. Abnorm. Psychol. 115: 239–250, https://doi.org/10.1037/0021-843x.115.2.239.Search in Google Scholar

Morsel, A.M., Morrens, M., Temmerman, A., Sabbe, B., and de Bruijn, E.R. (2014). Electrophysiological (EEG) evidence for reduced performance monitoring in euthymic bipolar disorder. Bipolar Disord. 16: 820–829, https://doi.org/10.1111/bdi.12256.Search in Google Scholar PubMed

Murphy, P.R., Robertson, I.H., Allen, D., Hester, R., and O’Connell, R.G. (2012). An electrophysiological signal that precisely tracks the emergence of error awareness. Front. Hum. Neurosci. 6: 1–16, https://doi.org/10.3389/fnhum.2012.00065.Search in Google Scholar PubMed PubMed Central

Niessen, E., Ant, J.M., Bode, S., Saliger, J., Karbe, H., Fink, G.R., Stahl, J., and Weiss, P.H. (2020). Preserved performance monitoring and error detection in left hemisphere stroke. Neuroimage Clin. 27: 102307, doi:https://doi.org/10.1016/j.nicl.2020.102307.Search in Google Scholar PubMed PubMed Central

Nieuwenhuis, S., Aston-Jones, G., and Cohen, J.D. (2005). Decision making, the P3, and the locus coeruleus--norepinephrine system. Psychol. Bull. 131: 510–532, https://doi.org/10.1037/0033-2909.131.4.510.Search in Google Scholar PubMed

Nieuwenhuis, S., Richard Ridderinkhof, K., Blom, J., Band, G.P.H., and Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38: 752–760, https://doi.org/10.1111/1469-8986.3850752.Search in Google Scholar

Notebaert, W., Houtman, F., Opstal, F. Van, Gevers, W., Fias, W., and Verguts, T. (2009). Post-error slowing: an orienting account. Cognition 111: 275–279, https://doi.org/10.1016/j.cognition.2009.02.002.Search in Google Scholar PubMed

Olson, R.L., Brush, C.J., Ehmann, P.J., Buckman, J.F., and Alderman, B.L. (2018). A history of sport-related concussion is associated with sustained deficits in conflict and error monitoring. Int. J. Psychophysiol. 132: 145–154, https://doi.org/10.1016/j.ijpsycho.2018.01.006.Search in Google Scholar PubMed PubMed Central

Olvet, D.M. and Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: toward an endophenotype. Clin. Psychol. Rev. 28: 1343–1354, https://doi.org/10.1016/j.cpr.2008.07.003.Search in Google Scholar PubMed PubMed Central

Overbeek, T.J.M., Nieuwenhuis, S., and Ridderinkhof, K.R. (2005). Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne. J. Psychophysiol. 19: 319–329, https://doi.org/10.1027/0269-8803.19.4.319.Search in Google Scholar

Overmeyer, R., Berghäuser, J., Dieterich, R., Wolff, M., Goschke, T., and Endrass, T. (2021). The error-related negativity predicts self-control failures in daily life. Front. Hum. Neurosci. 14: 616, https://doi.org/10.3389/fnhum.2020.614979.Search in Google Scholar PubMed PubMed Central

Ownsworth, T. and Clare, L. (2006). The association between awareness deficits and rehabilitation outcome following acquired brain injury. Clin. Psychol. Rev. 26: 783–795, https://doi.org/10.1016/j.cpr.2006.05.003.Search in Google Scholar PubMed

Ownsworth, T., Fleming, J., Tate, R., Beadle, E., Griffin, J., Kendall, M., Schmidt, J., Lane-Brown, A., Chevignard, M., and Shum, D.H.K. (2017). Do People with severe traumatic brain injury benefit from making errors? A randomized controlled trial of error-based and errorless learning. Neurorehabilitation Neural Repair 31: 1072–1082, https://doi.org/10.1177/1545968317740635.Search in Google Scholar PubMed

Perlbarg, V., Puybasset, L., Tollard, E., Lehéricy, S., Benali, H., and Galanaud, D. (2009). Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: a diffusion tensor imaging study using voxel-based approaches. Hum. Brain Mapp. 30: 3924–3933, https://doi.org/10.1002/hbm.20817.Search in Google Scholar PubMed PubMed Central

Peterburs, J., Gajda, K., Koch, B., Schwarz, M., Hoffmann, K.P., Daum, I., and Bellebaum, C. (2012). Cerebellar lesions alter performance monitoring on the antisaccade task-An event-related potentials study. Neuropsychologia 50: 379–389, https://doi.org/10.1016/j.neuropsychologia.2011.12.009.Search in Google Scholar PubMed

Peterburs, J., Pergola, G., Koch, B., Schwarz, M., Hoffmann, K.P., Daum, I., and Bellebaum, C. (2011). Altered error processing following vascular thalamic damage: evidence from an antisaccade task. PloS One 6: e21517, https://doi.org/10.1371/journal.pone.0021517.Search in Google Scholar PubMed PubMed Central

Peterburs, J., Thürling, M., Rustemeier, M., Göricke, S., Suchan, B., Timmann, D., and Bellebaum, C. (2015). A cerebellar role in performance monitoring – evidence from EEG and voxel-based morphometry in patients with cerebellar degenerative disease. Neuropsychologia 68: 139–147, https://doi.org/10.1016/j.neuropsychologia.2015.01.017.Search in Google Scholar PubMed

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118: 2128–2148, https://doi.org/10.1016/j.clinph.2007.04.019.Search in Google Scholar PubMed PubMed Central

Ponsford, J.L., Spitz, G., and McKenzie, D. (2016). Using post-traumatic amnesia to predict outcome after traumatic brain injury. J. Neurotrauma 33: 997–1004, https://doi.org/10.1089/neu.2015.4025.Search in Google Scholar PubMed

Pontifex, M.B., O’Connor, P.M., Broglio, S.P., and Hillman, C.H. (2009). The association between mild traumatic brain injury history and cognitive control. Neuropsychologia 47: 3210–3216, https://doi.org/10.1016/j.neuropsychologia.2009.07.021.Search in Google Scholar PubMed

Prigatano, G.P. (2005). Impaired self-awareness after moderately severe to severe traumatic brain injury. Acta Neurochir. Suppl. 93: 39–42, doi:https://doi.org/10.1007/3-211-27577-0_5.Search in Google Scholar PubMed

Prigatano, George, P., and Sherer, M. (2020). Impaired self-awareness and denial during the postacute phases after moderate to severe traumatic brain injury. Front. Psychol. 11, https://doi.org/10.3389/fpsyg.2020.01569.Search in Google Scholar PubMed PubMed Central

Rabinowitz, A.R., Hart, T., Whyte, J., and Kim, J. (2018). Neuropsychological recovery trajectories in moderate to severe traumatic brain injury: influence of patient characteristics and diffuse axonal injury. J. Int. Neuropsychol. Soc. 24: 237–246, https://doi.org/10.1017/s1355617717000996.Search in Google Scholar

Reinhart, R.M.G. and Woodman, G.F. (2014). Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. J. Neurosci. 34: 4214–4227, https://doi.org/10.1523/jneurosci.5421-13.2014.Search in Google Scholar

Ridderinkhof, K.R., Ramautar, J.R., and Wijnen, J.G. (2009). To P E or not to P E : a P3-like ERP component reflecting the processing of response errors. Psychophysiology 46: 531–538, https://doi.org/10.1111/j.1469-8986.2009.00790.x.Search in Google Scholar

Riesel, A. (2019). The erring brain: error-related negativity as an endophenotype for OCD-A review and meta-analysis. Psychophysiology 56: e13348, https://doi.org/10.1111/psyp.13348.Search in Google Scholar

Riesel, A., Klawohn, J., Grützmann, R., Kaufmann, C., Heinzel, S., Bey, K., Lennertz, L., Wagner, M., and Kathmann, N. (2019). Error-related brain activity as a transdiagnostic endophenotype for obsessive-compulsive disorder, anxiety and substance use disorder. Psychol. Med. 49: 1207–1217, https://doi.org/10.1017/s0033291719000199.Search in Google Scholar

Riesel, A., Richter, A., Kaufmann, C., Kathmann, N., and Endrass, T. (2015). Performance monitoring in obsessive-compulsive undergraduates: effects of task difficulty. Brain Cognit. 98: 35–42, https://doi.org/10.1016/j.bandc.2015.05.002.Search in Google Scholar

Robertson, K. and Schmitter-Edgecombe, M. (2015). Self-awareness and traumatic brain injury outcome. Brain Inj. 29: 848–858, https://doi.org/10.3109/02699052.2015.1005135.Search in Google Scholar

Rosenberg, P.B., Nowrangi, M.A., and Lyketsos, C.G. (2015). Neuropsychiatric symptoms in Alzheimer’s disease: what might be associated brain circuits? Mol. Aspect. Med. 43–44: 25–37, https://doi.org/10.1016/j.mam.2015.05.005.Search in Google Scholar

Rosenblatt, A., Liang, K.Y., Zhou, H., Abbott, M.H., Gourley, L.M., Margolis, R.L., Brandt, J., and Ross, C.A. (2006). The association of CAG repeat length with clinical progression in Huntington disease. Neurology 66: 1016–1020, https://doi.org/10.1212/01.wnl.0000204230.16619.d9.Search in Google Scholar

Rubenstein, H., Lewis, S.S., and Rubenstein, M.A. (1971). Homographic entries in the internal lexicon: effects of systematicity and relative frequency of meanings. J. Verb. Learn. Verb. Behav. 10: 57–62, https://doi.org/10.1016/s0022-5371(71)80094-4.Search in Google Scholar

Rustamov, N., Rodriguez-Raecke, R., Timm, L., Agrawal, D., Dressler, D., Schrader, C., Tacik, P., Wegner, F., Dengler, R., Wittfoth, M., et al.. (2014). Attention shifting in Parkinson’s disease: an analysis of behavioral and cortical responses. Neuropsychology 28: 929–944, https://doi.org/10.1037/neu0000099.Search in Google Scholar

Scheffers, M.K. and Coles, M.G.H. (2000). Performance monitoring in a confusing world : error related brain activity , judgements of response accuracy, and types of errors. J. Exp. Psychol. Hum. Percept. Perform. 26: 141–151 https://doi.org/10.1037/0096-1523.26.1.141.Search in Google Scholar

Schüller, T., Gruendler, T.O.J., Huster, R., Baldermann, J.C., Huys, D., Ullsperger, M., and Kuhn, J. (2018). Altered electrophysiological correlates of motor inhibition and performance monitoring in Tourette’s syndrome. Clin. Neurophysiol. 129: 1866–1872, https://doi.org/10.1016/j.clinph.2018.06.002.Search in Google Scholar

Seer, C., Joop, M., Lange, F., Lange, C., Dengler, R., Petri, S., and Kopp, B. (2017). Attenuated error-related potentials in amyotrophic lateral sclerosis with executive dysfunctions. Clin. Neurophysiol. 128: 1496–1503, https://doi.org/10.1016/j.clinph.2017.05.007.Search in Google Scholar

Seer, C., Lange, F., Loens, S., Wegner, F., Schrader, C., Dressler, D., Dengler, R., and Kopp, B. (2017). Dopaminergic modulation of performance monitoring in Parkinson’s disease: an event-related potential study. Sci. Rep. 7: 41222, https://doi.org/10.1038/srep41222.Search in Google Scholar

Seifert, S., Von Cramon, D.Y., Imperati, D., Tittgemeyer, M., and Ullsperger, M. (2011). Thalamocingulate interactions in performance monitoring. J. Neurosci. 31: 3375–3383, https://doi.org/10.1523/jneurosci.6242-10.2011.Search in Google Scholar

Shen, I.H., Lin, Y.J., Chen, C.L., and Liao, C.C. (2020). Neural correlates of response inhibition and error processing in individuals with mild traumatic brain injury: an event-related potential study. J. Neurotrauma 37: 115–124, https://doi.org/10.1089/neu.2018.6122.Search in Google Scholar

Sheppard, D. (1999). Tourette’s and comorbid syndromes obsessive compulsive and attention deficit hyperactivity disorder. a common etiology? Clin. Psychol. Rev. 19: 531–552, https://doi.org/10.1016/s0272-7358(98)00059-2.Search in Google Scholar

Sherer, M., Bergloff, P., Levin, E., High, W.M., Oden, K.E., and Nick, T.G. (1998). Impaired awareness and employment outcome after traumatic brain injury. J. Head Trauma Rehabil. 13: 52–61, https://doi.org/10.1097/00001199-199810000-00007.Search in Google Scholar PubMed

Sherer, M., Hart, T., Nick, T.G., Whyte, J., Thompson, R.N., and Yablon, S.A. (2003). Early impaired self-awareness after traumatic brain injury. Arch. Phys. Med. Rehabil. 84: 168–176, https://doi.org/10.1053/apmr.2003.50045.Search in Google Scholar PubMed

Simmond, M. and Fleming, J.M. (2003). Occupational therapy assessment of self-awareness following traumatic brain injury. Br. J. Occup. Ther. 66: 447–453, https://doi.org/10.1177/030802260306601003.Search in Google Scholar

Simmonite, M., Bates, A.T., Groom, M.J., Jackson, G.M., Hollis, C., and Liddle, P.F. (2012). Error processing-associated event-related potentials in schizophrenia and unaffected siblings. Int. J. Psychophysiol. 84: 74–79, https://doi.org/10.1016/j.ijpsycho.2012.01.012.Search in Google Scholar PubMed

Solbakk, A.K., Funderud, I., Løvstad, M., Endestad, T., Meling, T., Lindgren, M., Knight, R.T., and Krämer, U.M. (2014). Impact of orbitofrontal lesions on electrophysiological signals in a stop signal task. J. Cognit. Neurosci. 26: 1528–1545, https://doi.org/10.1162/jocn_a_00561.Search in Google Scholar PubMed PubMed Central

Sommer, M.A. (2003). The role of the thalamus in motor control. Curr. Opin. Neurobiol. 13: 663–670, https://doi.org/10.1016/j.conb.2003.10.014.Search in Google Scholar PubMed

Steinhauser, M. and Andersen, S.K. (2019). Rapid adaptive adjustments of selective attention following errors revealed by the time course of steady-state visual evoked potentials. Neuroimage 186: 83–92, https://doi.org/10.1016/j.neuroimage.2018.10.059.Search in Google Scholar PubMed PubMed Central

Steinhauser, M. and Yeung, N. (2010). Decision processes in human performance monitoring. J. Neurosci. 30: 15643–15653, https://doi.org/10.1523/jneurosci.1899-10.2010.Search in Google Scholar

Steinhauser, M. and Yeung, N. (2012). Error awareness as evidence accumulation: effects of speed-accuracy trade-off on error signaling. Front. Hum. Neurosci. 6: 240, https://doi.org/10.3389/fnhum.2012.00240.Search in Google Scholar PubMed PubMed Central

Stemmer, B., Segalowitz, S.J., Dywan, J., Panisset, M., and Melmed, C. (2007). The error negativity in nonmedicated and medicated patients with Parkinson’s disease. Clin. Neurophysiol. 118: 1123–1229, https://doi.org/10.1016/j.clinph.2007.02.019.Search in Google Scholar PubMed

Toglia, J.P. (2011). The dynamic interactional model of cognition in cognitive rehabilitation. In: Katz, N. (Ed.), Cognition, occupation, and participation across the life span: neuroscience,neurorehabilitation, and models of intervention in occupational therapy. American Occupational Therapy Association, Boston, pp. 116–201.Search in Google Scholar

Trahan, E., Pépin, M., and Hopps, S. (2006). Impaired awareness of deficits and treatment adherence among people with traumatic brain injury or spinal cord injury. J. Head Trauma Rehabil. 21: 226–235, https://doi.org/10.1097/00001199-200605000-00003.Search in Google Scholar PubMed

Tunc, S., Baginski, N., Lubs, J., Bally, J.F., Weissbach, A., Baaske, M.K., Tadic, V., Brüggemann, N., Bäumer, T., Beste, C., et al.. (2019). Predictive coding and adaptive behavior in patients with genetically determined cerebellar ataxia––a neurophysiology study. NeuroImage Clin 24: 102043, https://doi.org/10.1016/j.nicl.2019.102043.Search in Google Scholar PubMed PubMed Central

Uddin, L.Q. (2015). Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16: 55–61, https://doi.org/10.1038/nrn3857.Search in Google Scholar PubMed

Ullsperger, M., Danielmeier, C., and Jocham, G. (2014). Neurophysiology of performance monitoring and adaptive behavior. Physiol. Rev. 94: 35–79, https://doi.org/10.1152/physrev.00041.2012.Search in Google Scholar PubMed

Ullsperger, M., Harsay, H.A., Wessel, J.R., and Ridderinkhof, K.R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Struct. Funct. 214: 629–643, https://doi.org/10.1007/s00429-010-0261-1.Search in Google Scholar PubMed PubMed Central

Ullsperger, M., and von Cramon, D.Y. (2006). The Role of Intact Frontostriatal Circuits in Error Processing. Cogn. Neurosci. 18: 651–664, doi:https://doi.org/10.1162/jocn.2006.18.4.651.Search in Google Scholar PubMed

Ullsperger, M., Von Cramon, D.Y., and Müller, N.G. (2002). Interactions of focal cortical lesions with error processing: evidence from event-related brain potentials. Neuropsychology 16: 548–561, https://doi.org/10.1037/0894-4105.16.4.548.Search in Google Scholar

Vallet, W., Neige, C., Mouchet-Mages, S., Brunelin, J., and Grondin, S. (2021). Response-locked component of error monitoring in psychopathy: a systematic review and meta-analysis of error-related negativity/positivity. Neurosci. Biobehav. Rev. 123: 104–119, https://doi.org/10.1016/j.neubiorev.2021.01.004.Search in Google Scholar PubMed

Van Veen, V. and Carter, C.S. (2002). The tinning of action-monitoring processes in the anterior cingulate cortex. J. Cognit. Neurosci. 14: 593–602, https://doi.org/10.1162/08989290260045837.Search in Google Scholar PubMed

Verleger, R., Schroll, H., and Hamker, F.H. (2013). The unstable bridge from stimulus processing to correct responding in Parkinson’s disease. Neuropsychologia 51: 2512–2525, https://doi.org/10.1016/j.neuropsychologia.2013.09.017.Search in Google Scholar PubMed

Warren, C., Seer, C., Lange, F., Kopp, B., and Müller-Vahl, K. (2020). Neural correlates of performance monitoring in adult patients with Gilles de la Tourette syndrome: a study of event-related potentials. Clin. Neurophysiol. 131: 597–608, https://doi.org/10.1016/j.clinph.2019.11.019.Search in Google Scholar PubMed

Weinberg, A., Dieterich, R., and Riesel, A. (2015). Error-related brain activity in the age of RDoC: a review of the literature. Int. J. Psychophysiol. 98: 276–299, https://doi.org/10.1016/j.ijpsycho.2015.02.029.Search in Google Scholar PubMed

Wessel, J.R. (2018). An adaptive orienting theory of error processing. Psychophysiology 55: e13041, https://doi.org/10.1111/psyp.13041.Search in Google Scholar PubMed

Wessel, J.R., Danielmeier, C., and Ullsperger, M. (2011). Error awareness revisited: accumulation of multimodal evidence from central and autonomic nervous systems. J. Cognit. Neurosci. 23: 3021–3036, https://doi.org/10.1162/jocn.2011.21635.Search in Google Scholar PubMed

Wessel, J.R., Klein, T.A., Ott, D.V.M., and Ullsperger, M. (2014). Lesions to the prefrontal performance-monitoring network disrupt neural processing and adaptive behaviors after both errors and novelty. Cortex 50: 45–54, https://doi.org/10.1016/j.cortex.2013.09.002.Search in Google Scholar PubMed

Willemssen, R., Müller, T., Schwarz, M., Hohnsbein, J., and Falkenstein, M. (2008). Error processing in patients with Parkinson’s disease: the influence of medication state. J. Neural. Transm. 115: 461–468, https://doi.org/10.1007/s00702-007-0842-1.Search in Google Scholar PubMed

Willemssen, R., Müller, T., Schwarz, M., Falkenstein, M., and Beste, C. (2009). Response monitoring in de novo patients with Parkinson’s disease. PloS One 4: e4898, https://doi.org/10.1371/journal.pone.0004898.Search in Google Scholar PubMed PubMed Central

Wingfield, A. (1968). Effects of frequency on identification and naming of objects. Am. J. Psychol. 81: 226, https://doi.org/10.2307/1421267.Search in Google Scholar

Wiswede, D., Münte, T.F., Goschke, T., and Rüsseler, J. (2009). Modulation of the error-related negativity by induction of short-term negative affect. Neuropsychologia 47: 83–90, https://doi.org/10.1016/j.neuropsychologia.2008.08.016.Search in Google Scholar PubMed

Wolff, M. and Vann, S.D. (2019). The cognitive thalamus as a gateway to mental representations. J. Neurosci. 39: 3–14, https://doi.org/10.1523/jneurosci.0479-18.2018.Search in Google Scholar

Yeung, N., Botvinick, M.M., and Cohen, J.D. (2004). The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol. Rev. 111: 931, https://doi.org/10.1037/0033-295x.111.4.931.Search in Google Scholar

Zirnheld, P.J., Carroll, C.A., Kieffaber, P.D., O’Donnell, B.F., Shekhar, A., and Hetrick, W.P. (2004). Haloperidol impairs learning and error-related negativity in humans. J. Cognit. Neurosci. 16: 1098–1112, https://doi.org/10.1162/0898929041502779.Search in Google Scholar PubMed

Received: 2021-04-08
Accepted: 2021-05-28
Published Online: 2021-07-01
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2021-0054/html
Scroll to top button