Skip to main content
Log in

Heme induces significant neutrophil adhesion in vitro via an NFκB and reactive oxygen species-dependent pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Intravascular hemolysis, a major manifestation of sickle cell disease (SCD) and other diseases, incurs the release of hemoglobin and heme from red blood cells, in turn triggering inflammatory processes. This study investigated the in vitro effects of heme, a major inflammatory DAMP, on the adhesive properties of isolated human neutrophils. Heme (20 and 50 µM) significantly increased the adhesion of neutrophils to fibronectin and to recombinant ICAM-1, under static conditions, even more efficiently than the potent pro-inflammatory cytokine, tumor necrosis factor-α (TNF); a microfluidic assay confirmed that heme stimulated neutrophil adhesion under conditions of shear stress. Heme-induced neutrophil adhesion was associated with the increased activities, but not expressions, of the Mac-1 and LFA-1 integrin subunits, CD11b and CD11a, on the cell surface. Notably, heme (50 µM) significantly induced NFκB translocation in neutrophils, and inhibition of NFκB activity with the BAY11-7082 molecule abolished heme-induced cell adhesion to fibronectin and significantly decreased CD11a activity. Flow cytometric analysis demonstrated major reactive oxygen species (ROS) generation in neutrophils following heme stimulation that could be inhibited by the antioxidant, α-tocopherol, and by BAY11-7082. Furthermore, co-incubation with α-tocopherol abrogated both heme-stimulated neutrophil adhesion and CD11a/CD11b activation. Thus, our data indicate that heme, at clinically relevant concentrations, is a potent activator of neutrophil adhesion, increasing the ligand affinity of the β2 integrins via a mechanism that may be partially mediated by an NFkB-dependent pathway and the generation of ROS. Given the fundamental role that the adhesion of neutrophils to the vascular wall plays in SCD vaso-occlusion and other vascular inflammatory processes, our findings provide further evidence that cell-free heme is a major therapeutic target in the hemolytic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS (2009) Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med 15(4):384–391. https://doi.org/10.1038/nm.1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kapur R, Kasetty G, Rebetz J, Egesten A, Semple JW (2019) Osteopontin mediates murine transfusion-related acute lung injury via stimulation of pulmonary neutrophil accumulation. Blood 134(1):74–84. https://doi.org/10.1182/blood.2019000972

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez-Ramos S, Paz-Garcia M, Rius C, Del Monte-Monge A, Rodriguez C, Fernandez-Garcia V, Andres V, Martinez-Gonzalez J, Lasuncion MA, Martin-Sanz P, Soehnlein O, Bosca L (2019) Endothelial NOD1 directs myeloid cell recruitment in atherosclerosis through VCAM-1. FASEB J 33(3):3912–3921. https://doi.org/10.1096/fj.201801231RR

    Article  CAS  PubMed  Google Scholar 

  4. Doring Y, Drechsler M, Soehnlein O, Weber C (2015) Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol 35(2):288–295. https://doi.org/10.1161/ATVBAHA.114.303564

    Article  CAS  PubMed  Google Scholar 

  5. Margraf A, Ley K, Zarbock A (2019) Neutrophil recruitment: from model systems to tissue-specific patterns. Trends Immunol 40(7):613–634. https://doi.org/10.1016/j.it.2019.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO 3rd, Schechter AN, Gladwin MT (2002) Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 8(12):1383–1389. https://doi.org/10.1038/nm1202-799

    Article  CAS  PubMed  Google Scholar 

  7. Naumann HN, Diggs LW, Barreras L, Williams BJ (1971) Plasma hemoglobin and hemoglobin fractions in sickle cell crisis. Am J Clin Pathol 56(2):137–147. https://doi.org/10.1093/ajcp/56.2.137

    Article  CAS  PubMed  Google Scholar 

  8. Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M (1968) Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 32(5):811–815

    Article  CAS  PubMed  Google Scholar 

  9. Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM (2013) Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121(8):1276–1284. https://doi.org/10.1182/blood-2012-11-451229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santiago RP, Guarda CC, Figueiredo CVB, Fiuza LM, Aleluia MM, Adanho CSA, Carvalho MOS, Pitanga TN, Zanette DL, Lyra IM, Nascimento VML, Vercellotti GM, Belcher JD, Goncalves MS (2018) Serum haptoglobin and hemopexin levels are depleted in pediatric sickle cell disease patients. Blood Cells Mol Dis 72:34–36. https://doi.org/10.1016/j.bcmd.2018.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, Smith A, Nath KA, Hebbel RP, Vercellotti GM (2014) Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123(3):377–390. https://doi.org/10.1182/blood-2013-04-495887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roumenina LT, Rayes J, Lacroix-Desmazes S, Dimitrov JD (2016) Heme: modulator of plasma systems in hemolytic diseases. Trends Mol Med 22(3):200–213. https://doi.org/10.1016/j.molmed.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  13. Nath KA, Belcher JD, Nath MC, Grande JP, Croatt AJ, Ackerman AW, Katusic ZS, Vercellotti GM (2018) Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins. Am J Physiol Renal Physiol 314(5):F906–F914. https://doi.org/10.1152/ajprenal.00432.2017

    Article  CAS  PubMed  Google Scholar 

  14. Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS (2014) Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123(24):3818–3827. https://doi.org/10.1182/blood-2013-10-529982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graca-Souza AV, Arruda MA, de Freitas MS, Barja-Fidalgo C, Oliveira PL (2002) Neutrophil activation by heme: implications for inflammatory processes. Blood 99(11):4160–4165. https://doi.org/10.1182/blood.v99.11.4160

    Article  CAS  PubMed  Google Scholar 

  16. Arruda MA, Rossi AG, de Freitas MS, Barja-Fidalgo C, Graca-Souza AV (2004) Heme inhibits human neutrophil apoptosis: involvement of phosphoinositide 3-kinase, MAPK, and NF-kappaB. J Immunol 173(3):2023–2030. https://doi.org/10.4049/jimmunol.173.3.2023

    Article  CAS  PubMed  Google Scholar 

  17. Kilpatrick LE, Lee JY, Haines KM, Campbell DE, Sullivan KE, Korchak HM (2002) A role for PKC-delta and PI 3-kinase in TNF-alpha-mediated antiapoptotic signaling in the human neutrophil. Am J Physiol Cell Physiol 283(1):C48-57. https://doi.org/10.1152/ajpcell.00385.2001

    Article  CAS  PubMed  Google Scholar 

  18. Bellezza I, Mierla AL, Minelli A (2010) Nrf2 and NF-kappaB and their concerted modulation in cancer pathogenesis and progression. Cancers (Basel) 2(2):483–497. https://doi.org/10.3390/cancers2020483

    Article  CAS  Google Scholar 

  19. Almeida CB, Souza LE, Leonardo FC, Costa FT, Werneck CC, Covas DT, Costa FF, Conran N (2015) Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea. Blood 126(6):711–720. https://doi.org/10.1182/blood-2014-12-616250

    Article  CAS  PubMed  Google Scholar 

  20. English D, Andersen BR (1974) Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods 5(3):249–252. https://doi.org/10.1016/0022-1759(74)90109-4

    Article  CAS  PubMed  Google Scholar 

  21. Assis A, Conran N, Canalli AA, Lorand-Metze I, Saad ST, Costa FF (2005) Effect of cytokines and chemokines on sickle neutrophil adhesion to fibronectin. Acta Haematol 113(2):130–136. https://doi.org/10.1159/000083451

    Article  CAS  PubMed  Google Scholar 

  22. Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78(3):206–209

    Article  CAS  PubMed  Google Scholar 

  23. Silveira AAA, Dominical VM, Almeida CB, Chweih H, Ferreira WA Jr, Vicente CP, Costa FTM, Werneck CC, Costa FF, Conran N (2018) TNF induces neutrophil adhesion via formin-dependent cytoskeletal reorganization and activation of beta-integrin function. J Leukoc Biol 103(1):87–98. https://doi.org/10.1189/jlb.3A0916-388RR

    Article  CAS  PubMed  Google Scholar 

  24. Immenschuh S, Vijayan V, Janciauskiene S, Gueler F (2017) Heme as a target for therapeutic interventions. Front Pharmacol 8:146. https://doi.org/10.3389/fphar.2017.00146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakamoto TM, Canalli AA, Traina F, Franco-Penteado CF, Gambero S, Saad ST, Conran N, Costa FF (2013) Altered red cell and platelet adhesion in hemolytic diseases: Hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria and sickle cell disease. Clin Biochem 46(18):1798–1803. https://doi.org/10.1016/j.clinbiochem.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  26. Canalli AA, Franco-Penteado CF, Saad ST, Conran N, Costa FF (2008) Increased adhesive properties of neutrophils in sickle cell disease may be reversed by pharmacological nitric oxide donation. Haematologica 93(4):605–609. https://doi.org/10.3324/haematol.12119

    Article  CAS  PubMed  Google Scholar 

  27. Wagener FA, Eggert A, Boerman OC, Oyen WJ, Verhofstad A, Abraham NG, Adema G, van Kooyk Y, de Witte T, Figdor CG (2001) Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98(6):1802–1811. https://doi.org/10.1182/blood.v98.6.1802

    Article  CAS  PubMed  Google Scholar 

  28. Wagener FA, Feldman E, de Witte T, Abraham NG (1997) Heme induces the expression of adhesion molecules ICAM-1, VCAM-1, and E selectin in vascular endothelial cells. Proc Soc Exp Biol Med 216(3):456–463. https://doi.org/10.3181/00379727-216-44197

    Article  CAS  PubMed  Google Scholar 

  29. Kono M, Saigo K, Takagi Y, Takahashi T, Kawauchi S, Wada A, Hashimoto M, Minami Y, Imoto S, Takenokuchi M, Morikawa T, Funakoshi K (2014) Heme-related molecules induce rapid production of neutrophil extracellular traps. Transfusion 54(11):2811–2819. https://doi.org/10.1111/trf.12700

    Article  CAS  PubMed  Google Scholar 

  30. Monteiro AP, Pinheiro CS, Luna-Gomes T, Alves LR, Maya-Monteiro CM, Porto BN, Barja-Fidalgo C, Benjamim CF, Peters-Golden M, Bandeira-Melo C, Bozza MT, Canetti C (2011) Leukotriene B4 mediates neutrophil migration induced by heme. J Immunol 186(11):6562–6567. https://doi.org/10.4049/jimmunol.1002400

    Article  CAS  PubMed  Google Scholar 

  31. Porto BN, Alves LS, Fernandez PL, Dutra TP, Figueiredo RT, Graca-Souza AV, Bozza MT (2007) Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J Biol Chem 282(33):24430–24436. https://doi.org/10.1074/jbc.M703570200

    Article  CAS  PubMed  Google Scholar 

  32. Miguel LI, Almeida CB, Traina F, Canalli AA, Dominical VM, Saad ST, Costa FF, Conran N (2011) Inhibition of phosphodiesterase 9A reduces cytokine-stimulated in vitro adhesion of neutrophils from sickle cell anemia individuals. Inflamm Res 60(7):633–642. https://doi.org/10.1007/s00011-011-0315-8

    Article  CAS  PubMed  Google Scholar 

  33. Broering MF, Nunes R, De Faveri R, De Faveri A, Melato J, Correa TP, Vieira ME, Malheiros A, Meira Quintao NL, Santin JR (2019) Effects of Tithonia diversifolia (Asteraceae) extract on innate inflammatory responses. J Ethnopharmacol 242:112041. https://doi.org/10.1016/j.jep.2019.112041

    Article  CAS  PubMed  Google Scholar 

  34. Aerbajinai W, Liu L, Zhu J, Kumkhaek C, Chin K, Rodgers GP (2016) Glia maturation factor-gamma regulates monocyte migration through modulation of beta1-Integrin. J Biol Chem 291(16):8549–8564. https://doi.org/10.1074/jbc.M115.674200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lorincz AM, Bartos B, Szombath D, Szeifert V, Timar CI, Turiak L, Drahos L, Kittel A, Veres DS, Kolonics F, Mocsai A, Ligeti E (2020) Role of Mac-1 integrin in generation of extracellular vesicles with antibacterial capacity from neutrophilic granulocytes. J Extracell Vesicles 9(1):1698889. https://doi.org/10.1080/20013078.2019.1698889

    Article  CAS  PubMed  Google Scholar 

  36. Yu H, Lin L, Zhang Z, Zhang H, Hu H (2020) Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 5(1):209. https://doi.org/10.1038/s41392-020-00312-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gasparini C, Celeghini C, Monasta L, Zauli G (2014) NF-kappaB pathways in hematological malignancies. Cell Mol Life Sci 71(11):2083–2102. https://doi.org/10.1007/s00018-013-1545-4

    Article  CAS  PubMed  Google Scholar 

  38. Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, Takemura Y, Ohishi M, Katsuya T, Rakugi H (2009) Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine 35(3):341–346. https://doi.org/10.1007/s12020-009-9181-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a fellowship from CAPES to LIMT and by a research Grant from São Paulo Research Foundation (FAPESP, Grant Number: 2018/08010–9).

Author information

Authors and Affiliations

Authors

Contributions

LIMT, NC, FCL and FFC designed the study. LIMT, FCL, LST, FG, RM, WAM, EMFG, FCZF and PLB performed data acquisition. LIMT, FG, FCL, MFG and NC contributed to data and statistical analysis. LIMT and NC prepared the manuscript. All the authors approved the final version.

Corresponding author

Correspondence to Nicola Conran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest relevant to this study.

Ethical approval

This study was approved by the Ethics Committee of the University of Campinas, Brazil (under protocol number CAAE10550012.3.0000.5404), and conducted in accordance with national guidelines for human research and with the Declaration of Helsinki.

Informed consent

Informed written consent was obtained from all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2021_4210_MOESM1_ESM.docx

.Imaging cytometry analysis of NFκB nuclear translocation from the cytoplasm to the neutrophil nucleus. Neutrophils were labelled with anti-CD66b PE, permeabilized and stained with anti-NFκB Alexa Fluor® 488 antibody (in green) and the 7AAD nuclear dye (in red). Representative images of untranslocated (UT) and translocated (T) NFκB in (A; basal) unstimulated neutrophils, (B) neutrophils stimulated with TNF (200 ng/mL), (C) heme (50 μM), or (D) heme (50 μM) and Bay 11-7082 (20 μM) (37°C, 5% CO2; 30 min). Representative similarity histograms for each group, calculating the percentage of neutrophils displaying NFκB translocation are presented in Figure 3A (docx 101 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miguel, L.I., Leonardo, F.C., Torres, L.S. et al. Heme induces significant neutrophil adhesion in vitro via an NFκB and reactive oxygen species-dependent pathway. Mol Cell Biochem 476, 3963–3974 (2021). https://doi.org/10.1007/s11010-021-04210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04210-5

Keywords

Navigation