Skip to main content

Advertisement

Log in

Peptide KED: Molecular-Genetic Aspects of Neurogenesis Regulation in Alzheimer’s Disease

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Neuroprotective peptides are promising candidate molecules for the treatment of Alzheimer’s disease (AD). Oral application of KED (Lys-Glu-Asp) improved memory and attention in elderly individuals with functional CNS disorders. Peptide KED also restores synaptic plasticity in in vitro model of AD. This review is focused on the analysis of the influence of KED peptide on the expression of genes and synthesis of proteins regulating apoptosis, aging, neurogenesis, and involved in AD pathogenesis. Analysis of published reports and our experimental findings suggests that KED regulates the expression of genes of cell aging and apoptosis (р16, р21), genes (NES, GAP43) and proteins (nestin, GAP43) of the neuronal differentiation, and genes involved in AD pathogenesis (SUMO, APOE, and IGF1). The study the effectiveness of neuroprotective peptide KED in animal models of AD seems to be very important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balashova SN, Zhernakov GL, Dudkov AV. Application of peptide bioregulators by old people suffering from psychoemotional disorders. Uspekhi Gerontol. 2008;21(3):448-452. Russian.

    CAS  Google Scholar 

  2. Zhurkovich IK, Kovrov NG, Ryzhak GA, Mironova ES, Khavinson VKh. Identification of short peptides as part of polypeptide complexes isolated from animal organs. Uspekhi Sovermen. Biol. 2020;140(2):140-148. doi: 10.31857/S004213242002012X. Russian.

  3. Kraskovskaya NA, Kukanova EO, Lin’kova NS, Popugaeva EA, Khavinson VK. Tripeptides Restore the Number of Neuronal Spines under Conditions of In Vitro Modeled Alzheimer’s Disease. Bull. Exp. Biol. Med. 2017;163(4):550-553. doi: https://doi.org/10.1007/s10517-017-3847-2

    Article  CAS  PubMed  Google Scholar 

  4. Khavinson VK, Lin’kova NS, Tarnovskaya SI. Short Peptides Regulate Gene Expression. Bull. Exp. Biol. Med. 2016;162(2):288-292. doi: https://doi.org/10.1007/s10517-016-3596-7

    Article  CAS  PubMed  Google Scholar 

  5. Shilovsky GA, Ashapkin VV, Linkova NS, Khavinson VK, Vanyushin BF. Expression of KLF, PTEN, SUMO1, APOE, SOD2, and SHC1 genes in differently “aged” quiescent cells: a model for testing of some geroprotectors. Klin. Gerontol. 2018;24(9-10):80-82. Russian.

    Google Scholar 

  6. Ashapkin V, Khavinson V, Shilovsky G, Linkova N, Vanuyshin B. Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. Mol. Biol. Rep. 2020;47(6):4323-4329. doi: https://doi.org/10.1007/s11033-020-05506-3

    Article  CAS  PubMed  Google Scholar 

  7. Caputi S, Trubiani O, Sinjari B, Trofimova S, Diomede F, Linkova N, Diatlova A, Khavinson V. Effect of short peptides on neuronal differentiation of stem cells. Int. J. Immunopathol. Pharmacol. 2019;33. doi: https://doi.org/10.1177/2058738419828613

  8. Cho SJ, Yun SM, Jo C, Lee DH, Choi KJ, Song JC, Park SI, Kim YJ, Koh YH. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11(1):100-112. doi: https://doi.org/10.4161/15548627.2014.984283

    Article  PubMed  Google Scholar 

  9. Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S. Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: a review. Eur. J. Med. Chem. 2019;169:185-199. doi: https://doi.org/10.1016/j.ejmech.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  10. Grösgen S, Grimm MO, Friess P, Hartmann T. Role of amyloid beta in lipid homeostasis. Biochim. Biophys. Acta. 2010;1801(8):966-974. doi: https://doi.org/10.1016/j.bbalip.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  11. Hoveizi E, Mohammadi T, Moazedi A.A, Zamani N, Eskandary A. Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model. Cytotherapy. 2018;20(7):964-973. doi: https://doi.org/10.1016/j.jcyt.2018.03.036

  12. Khavinson V, Linkova N, Diatlova A, Trofimova S. Peptide regulation of cell differentiation. Stem Cell Rev. Rep. 2020;16(1):118-125. doi: https://doi.org/10.1007/s12015-019-09938-8

    Article  CAS  PubMed  Google Scholar 

  13. Krishnasamy S, Weng YC, Thammisetty SS, Phaneuf D, Lalancette-Hebert M, Kriz J. Molecular imaging of nestin in neuroinflammatory conditions reveals marked signal induction in activated microglia. J. Neuroinflammation. 2017;14(1):45. doi: https://doi.org/10.1186/s12974-017-0816-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Han Y, Li M, Nie C. Curcumin promotes proliferation of adult neural stem cells and the birth of neurons in Alzheimer’s disease mice via Notch signaling pathway. Cell Reprogram. 2019;21(3):152-161. doi: https://doi.org/10.1089/cell.2018.0027

    Article  CAS  PubMed  Google Scholar 

  15. Matsuzaki S, Lee L, Knock E, Srikumar T, Sakurai M, Hazrati LN, Katayama T, Staniszewski A, Raught B, Arancio O, Fraser PE. SUMO1 affects synaptic function, spine density and memory. Sci. Rep. 2015;5:10730. doi: https://doi.org/10.1038/srep10730

    Article  PubMed  PubMed Central  Google Scholar 

  16. Niculescu AB, Le-Niculescu H, Roseberry K, Wang S, Hart J, Kaur A, Robertson H, Jones T, Strasburger A, Williams A, Kurian SM, Lamb B, Shekhar A, Lahiri DK, Saykin AJ. Blood biomarkers for memory: toward early detection of risk for Alzheimer disease, pharmacogenomics, and repurposed drugs. Mol. Psychiatry. 2020;25(8):1651-1672. doi: https://doi.org/10.1038/s41380-019-0602-2

    Article  CAS  PubMed  Google Scholar 

  17. Nisticò R, Ferraina C, Marconi V, Blandini F, Negri L, Egebjerg J, Feligioni M. Age-related changes of protein SUMOylation balance in the AβPP Tg2576 mouse model of Alzheimer’s disease. Front. Pharmacol. 2014;5:63. doi: https://doi.org/10.3389/fphar.2014.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quick Q, Paul M, Skalli O. Roles and potential clinical applications of intermediate filament proteins in brain tumors. Semin. Pediatr. Neurol. 2015;22(1):40-48. doi: https://doi.org/10.1016/j.spen.2014.12.005.

    Article  PubMed  Google Scholar 

  19. Rosskothen-Kuhl N, Illing RB. Gap43 Transcription modulation in the adult brain depends on sensory activity and synaptic cooperation. PLoS One. 2014;9(3):e92624. doi: https://doi.org/10.1371/journal.pone.0092624

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sandelius Å, Portelius E, Källén Å, Zetterberg H, Rot U, Olsson B, Toledo JB, Shaw LM, Lee VMY, Irwin DJ, Grossman M, Weintraub D, Chen-Plotkin A, Wolk DA, McCluskey L, Elman L, Kostanjevecki V, Vandijck M, McBride J, Trojanowski JQ, Blennow K. Elevated CSF GAP-43 is Alzheimer’s disease specific and associated with tau and amyloid pathology. Alzheimers Dement. 2019;15(1):55-64. doi: https://doi.org/10.1016/j.jalz.2018.08.006

    Article  PubMed  Google Scholar 

  21. Sinjari B, Diomede F, Khavinson V, Mironova E, Linkova N, Trofimova S, Trubiani O, Caputi S. Short peptides protect oral stem cells from ageing. Stem Cell Rev. Rep. 2020;16(1):159-166. doi: https://doi.org/10.1007/s12015-019-09921-3

    Article  PubMed  Google Scholar 

  22. Sun CK, Zhou D, Zhang Z, He L, Zhang F, Wang X, Yuan J, Chen Q, Wu LG, Yang Q. Senescence impairs direct conversion of human somatic cells to neurons. Nat. Commun. 2014;5:4112. doi: https://doi.org/10.1038/ncomms5112

    Article  CAS  PubMed  Google Scholar 

  23. Vazquez-Villaseñor I, Garwood CJ, Heath PR, Simpson JE, Ince PG, Wharton SB. Expression of p16 and p21 in the frontal association cortex of ALS/MND brains suggests neuronal cell cycle dysregulation and astrocyte senescence in early stages of the disease. Neuropathol. Appl. Neurobiol. 2020;46(2):171-185. doi: https://doi.org/10.1111/nan.12559

    Article  CAS  PubMed  Google Scholar 

  24. Wei Z, Chen XC, Song Y, Pan XD, Dai XM, Zhang J, Cui XL, Wu XL, Zhu YG. Amyloid β protein aggravates neuronal senescence and cognitive deficits in 5XFAD mouse model of Alzheimer’s disease. Chin. Med. J. (Engl). 2016;129(15):1835-1844. doi: 10.4103/0366-6999.186646

  25. Yan S, Li P, Wang Y, Yu W, Qin A, Liu M, Xiang A.P, Zhang W, Li W. Nestin regulates neural stem cell migration via controlling the cell contractility. Int. J. Biochem. Cell Biol. 2016;78:349-360. doi: https://doi.org/10.1016/j.biocel.2016.07.034

  26. Zeng Q, Zheng M, Zhang T, He G. Hippocampal neurogenesis in the APP/PS1/nestin-GFP triple transgenic mouse model of Alzheimer’s disease. Neuroscience. 2016;314:64-74. doi: https://doi.org/10.1016/j.neuroscience.2015.11.054

    Article  CAS  PubMed  Google Scholar 

  27. Zhao JC, Zhang LX, Zhang Y, Shen YF. The differential regulation of Gap43 gene in the neuronal differentiation of P19 cells. J. Cell. Physiol. 2012;227(6):2645-2653. doi: https://doi.org/10.1002/jcp.23006

    Article  CAS  PubMed  Google Scholar 

  28. Zheng P, Tong W. IGF-1: an endogenous link between traumatic brain injury and Alzheimer disease? J. Neurosurg. Sci. 2017;61(4):416-421. doi: 10.23736/S0390-5616.16.03431-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Lin’kova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 171, No. 2, pp. 150-154, February, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khavinson, V.K., Lin’kova, N.S. & Umnov, R.S. Peptide KED: Molecular-Genetic Aspects of Neurogenesis Regulation in Alzheimer’s Disease. Bull Exp Biol Med 171, 190–193 (2021). https://doi.org/10.1007/s10517-021-05192-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05192-6

Key Words

Navigation