Skip to main content

Advertisement

Log in

Perspectives for circulating tumor DNA in clinical management of colorectal cancer

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Growing evidence has demonstrated that circulating tumor DNA (ctDNA) detection in colorectal cancer might be a promising approach to address current important clinical questions. During chemotherapy for metastatic colorectal cancer, tumor cells acquire potential resistance by generating additional somatic mutations related to therapeutic resistance. ctDNA can capture the tumor landscape, including heterogeneity, which might provide the opportunity for additional treatment options. Moreover, ctDNA detection is advantageous, because it can monitor tumor heterogeneity serially, in a non-invasive manner. ctDNA is considered valid for detecting minimal residual disease after a curable resection. By utilizing ctDNA detection, adjuvant chemotherapy for patients with stage II–III colorectal cancer might be omitted for patients at low risk of recurrence; or conversely, adjuvant chemotherapy might be highly recommended for patients at high risk, based on ctDNA findings. During multidisciplinary treatments for locally advanced rectal cancer, it is essential to monitor the responses to sequential treatments to make appropriate decisions. Currently, these decisions are mainly based on radiological or pathological findings. ctDNA can add value by providing the real-time status of locally advanced rectal cancer. In this review, we summarized the current evidence and discussed future strategies for using ctDNA in the treatment of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heald RJ, Ryall RD (1986) Recurrence and survival after total mesorectal excision for rectal cancer. Lancet 1:1479–1482

    Article  CAS  PubMed  Google Scholar 

  2. Quirke P, Durdey P, Dixon MF et al (1986) Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Histopathological study of lateral tumour spread and surgical excision. Lancet 2:996–999

    Article  CAS  PubMed  Google Scholar 

  3. De Simoni O, Barina A, Sommariva A et al (2020) Complete mesocolic excision versus conventional hemicolectomy in patients with right colon cancer: a systematic review and meta-analysis. Int J Colorectal Dis. https://doi.org/10.1007/s00384-020-03797-3

    Article  PubMed  Google Scholar 

  4. Di Buono G, Buscemi S, Cocorullo G et al (2020) Feasibility and safety of laparoscopic complete mesocolic excision (cme) for right-sided colon cancer: short-term outcomes. A randomized clinical study. Ann Surg. https://doi.org/10.1097/SLA.0000000000004557

    Article  Google Scholar 

  5. Andre T, Boni C, Mounedji-Boudiaf L et al (2004) Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350:2343–2351

    Article  CAS  PubMed  Google Scholar 

  6. Andre T, Boni C, Navarro M et al (2009) Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 27:3109–3116

    Article  CAS  PubMed  Google Scholar 

  7. Bosset JF, Collette L, Calais G et al (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355:1114–1123

    Article  CAS  PubMed  Google Scholar 

  8. Gerard JP, Conroy T, Bonnetain F et al (2006) Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3–4 rectal cancers: results of FFCD 9203. J Clin Oncol 24:4620–4625

    Article  PubMed  Google Scholar 

  9. Haller DG, Tabernero J, Maroun J et al (2011) Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. J Clin Oncol 29:1465–1471

    Article  CAS  PubMed  Google Scholar 

  10. Kapiteijn EMC, Nagtegaal ID, Putter H et al (2001) Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med 345:638–646

    Article  CAS  PubMed  Google Scholar 

  11. Kuebler JP, Wieand HS, O’Connell MJ et al (2007) Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: results from NSABP C-07. J Clin Oncol 25:2198–2204

    Article  CAS  PubMed  Google Scholar 

  12. Swedish Rectal Cancer T, Cedermark B, Dahlberg M et al (1997) Improved survival with preoperative radiotherapy in resectable rectal cancer. N Engl J Med 336:980–987

    Article  Google Scholar 

  13. Yothers G, O’Connell MJ, Allegra CJ et al (2011) Oxaliplatin as adjuvant therapy for colon cancer: updated results of NSABP C-07 trial, including survival and subset analyses. J Clin Oncol 29:3768–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grothey A, Sobrero AF, Shields AF et al (2018) Duration of adjuvant chemotherapy for stage III colon cancer. N Engl J Med 378:1177–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamazaki K, Yamanaka T, Shiozawa M et al (2021) Oxaliplatin-based adjuvant chemotherapy duration (3 versus 6 months) for high-risk stage II colon cancer: the randomized phase III ACHIEVE-2 trial. Ann Oncol 32:77–84

    Article  CAS  PubMed  Google Scholar 

  16. Yoshino T, Yamanaka T, Oki E et al (2019) Efficacy and long-term peripheral sensory neuropathy of 3 vs 6 months of oxaliplatin-based adjuvant chemotherapy for colon cancer: the ACHIEVE phase 3 randomized clinical trial. JAMA Oncol 5:1574–1581

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pita-Fernandez S, Alhayek-Ai M, Gonzalez-Martin C et al (2015) Intensive follow-up strategies improve outcomes in nonmetastatic colorectal cancer patients after curative surgery: a systematic review and meta-analysis. Ann Oncol 26:644–656

    Article  CAS  PubMed  Google Scholar 

  18. Tjandra JJ, Chan MK (2007) Follow-up after curative resection of colorectal cancer: a meta-analysis. Dis Colon Rectum 50:1783–1799

    Article  PubMed  Google Scholar 

  19. Fakih MG (2015) Metastatic colorectal cancer: current state and future directions. J Clin Oncol 33:1809–1824

    Article  CAS  PubMed  Google Scholar 

  20. Corcoran RB, Chabner BA (2018) Application of Cell-free DNA Analysis to Cancer Treatment. N Engl J Med 379:1754–1765

    Article  CAS  PubMed  Google Scholar 

  21. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628. https://doi.org/10.1016/j.cell.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  22. Parseghian CM, Napolitano S, Loree JM et al (2019) Mechanisms of Innate and Acquired Resistance to Anti-EGFR Therapy: A Review of Current Knowledge with a Focus on Rechallenge Therapies. Clin Cancer Res 25:6899–6908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siena S, Sartore-Bianchi A, Garcia-Carbonero R et al (2018) Dynamic molecular analysis and clinical correlates of tumor evolution within a phase II trial of panitumumab-based therapy in metastatic colorectal cancer. Ann Oncol 29:119–126

    Article  CAS  PubMed  Google Scholar 

  24. Siravegna G, Mussolin B, Buscarino M et al (2015) Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 21:795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  26. Morganti S, Tarantino P, Ferraro E et al (2019) Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Crit Rev Oncol Hematol 133:171–182

    Article  PubMed  Google Scholar 

  27. Alves Martins BA, de Bulhoes GF, Cavalcanti IN et al (2019) Biomarkers in Colorectal Cancer: The Role of Translational Proteomics Research. Front Oncol 9:1284

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hata T, Takemasa I, Takahashi H et al (2017) Downregulation of serum metabolite GTA-446 as a novel potential marker for early detection of colorectal cancer. Br J Cancer 117:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224

    Article  CAS  Google Scholar 

  30. Siravegna G, Marsoni S, Siena S et al (2017) Integrating liquid BIOPSIES into the management of cancer. Nat Rev Clin Oncol 14:531–548

    Article  CAS  PubMed  Google Scholar 

  31. Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids–a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581:795–799

    Article  CAS  PubMed  Google Scholar 

  32. Merker JD, Oxnard GR, Compton C et al (2018) Circulating Tumor DNA Analysis in Patients With Cancer: American tSociety of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol 36:1631–1641

    Article  CAS  PubMed  Google Scholar 

  33. Siravegna G, Mussolin B, Venesio T et al (2019) How liquid biopsies can change clinical practice in oncology. Ann Oncol 30:1580–1590

    Article  CAS  PubMed  Google Scholar 

  34. Guibert N, Pradines A, Favre G, et al (2020) Current and future applications of liquid biopsy in nonsmall cell lung cancer from early to advanced stages. Eur Respir Rev 29:190052

  35. Mandel P, Metais P (1948) Nuclear acids in human blood plasma. C R Seances Soc Biol Fil 142:241–243

    CAS  PubMed  Google Scholar 

  36. Janne PA, Borras AM, Kuang Y et al (2006) A rapid and sensitive enzymatic method for epidermal growth factor receptor mutation screening. Clin Cancer Res 12(3 Pt 1):751–758

    Article  PubMed  Google Scholar 

  37. Ryan BM, Lefort F, McManus R et al (2003) A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up. Gut 52:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Postel M, Roosen A, Laurent-Puig P et al (2018) Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn 18:7–17

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura Y, Taniguchi H, Ikeda M et al (2020) Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. Nat Med 26:1859–1864

    Article  PubMed  CAS  Google Scholar 

  40. Cancer Genome Atlas N (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Article  CAS  Google Scholar 

  41. Dienstmann R, Vermeulen L, Guinney J et al (2017) Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 17:79–92

    Article  CAS  PubMed  Google Scholar 

  42. Fearon ER, Carethers JM (2015) Molecular subtyping of colorectal cancer: time to explore both intertumoral and intratumoral heterogeneity to evaluate patient outcome. Gastroenterology 148:10–13

    Article  PubMed  Google Scholar 

  43. Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94

    Article  CAS  PubMed  Google Scholar 

  44. Dasari A, Morris VK, Allegra CJ et al (2020) ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper. Nat Rev Clin Oncol 17:757–770

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cristiano S, Leal A, Phallen J et al (2019) Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990

    Article  CAS  PubMed  Google Scholar 

  47. Salem ME, Puccini A, Tie J (2020) Redefining colorectal cancer by tumor biology. Am Soc Clin Oncol Educ Book 40:1–13

    PubMed  Google Scholar 

  48. Swanton C, Venn O, Aravanis A, et al (2018) Prevalence of clonal hematopoiesis of indeterminate potential (CHIP) measured by an ultra-sensitive sequencing assay: Exploratory analysis of the Circulating Cancer Genome Atlas (CCGA) study. Journal of Clinical Oncology 36(15_suppl):e12003. doi:https://doi.org/10.1200/JCO.2018.36.15_suppl.12003

  49. Hashiguchi Y, Muro K, Saito Y et al (2019) Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol 25:1–42

    Article  PubMed  PubMed Central  Google Scholar 

  50. Adam R, Pascal G, Azoulay D et al (2003) Liver resection for colorectal metastases: the third hepatectomy. Ann Surg 238:871–883

    Article  PubMed  PubMed Central  Google Scholar 

  51. Adam R, de Gramont A, Figueras J et al (2015) Managing synchronous liver metastases from colorectal cancer: a multidisciplinary international consensus. Cancer Treat Rev 41:729–741

    Article  PubMed  Google Scholar 

  52. Donati M, Stavrou GA, Stang A et al (2015) “Liver-first” approach for metastatic colorectal cancer. Future Oncol 11:1233–1243

    Article  CAS  PubMed  Google Scholar 

  53. Iwai T, Yamada T, Takahashi G et al (2020) Circulating cell-free long DNA fragments predict post-hepatectomy recurrence of colorectal liver metastases. Eur J Surg Oncol 46:108–114

    Article  PubMed  Google Scholar 

  54. Garlan F, Laurent-Puig P, Sefrioui D et al (2017) Early evaluation of circulating tumor DNA as marker of therapeutic efficacy in metastatic colorectal cancer patients (PLACOL study). Clin Cancer Res 23:5416–5425

    Article  CAS  PubMed  Google Scholar 

  55. Parikh AR, Mojtahed A, Schneider JL et al (2020) Serial ctDNA Monitoring to Predict Response to Systemic Therapy in Metastatic Gastrointestinal Cancers. Clin Cancer Res 26:1877–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vidal J, Muinelo L, Dalmases A et al (2017) Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann Oncol 28:1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tie J, Kinde I, Wang Y et al (2015) Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol 26:1715–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cremolini C, Rossini D, Dell’Aquila E et al (2019) Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: a phase 2 single-arm clinical trial. JAMA Oncol 5:343–350

    Article  PubMed  Google Scholar 

  59. Santini D, Vincenzi B, Addeo R et al (2012) Cetuximab rechallenge in metastatic colorectal cancer patients: how to come away from acquired resistance? Ann Oncol 23:2313–2318

    Article  CAS  PubMed  Google Scholar 

  60. Strickler JH, Loree JM, Ahronian LG et al (2018) Genomic landscape of cell-free DNA in patients with colorectal cancer. Cancer Discov 8:164–173

    Article  CAS  PubMed  Google Scholar 

  61. Parseghian CM, Loree JM, Morris VK et al (2019) Anti-EGFR-resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge. Ann Oncol 30:243–249

    Article  CAS  PubMed  Google Scholar 

  62. Montagut C, Tsui DW, Diaz LA Jr (2018) Detection of somatic RAS mutations in circulating tumor DNA from metastatic colorectal cancer patients: are we ready for clinical use? Ann Oncol 29:1083–1084

    Article  CAS  PubMed  Google Scholar 

  63. Bando H, Kagawa Y, Kato T et al (2019) A multicentre, prospective study of plasma circulating tumour DNA test for detecting RAS mutation in patients with metastatic colorectal cancer. Brit J Cancer 120:982–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meric-Bernstam F, Hurwitz H, Raghav KPS et al (2019) Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 20:518–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hainsworth JD, Meric-Bernstam F, Swanton C et al (2018) Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 36:536–542

    Article  CAS  PubMed  Google Scholar 

  66. Sartore-Bianchi A, Trusolino L, Martino C et al (2016) Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 17:738–746

    Article  CAS  PubMed  Google Scholar 

  67. Kopetz S, Grothey A, Yaeger R et al (2019) Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med 381:1632–1643

    Article  CAS  PubMed  Google Scholar 

  68. Doebele RC, Drilon A, Paz-Ares L et al (2020) Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol 21:271–282

    Article  CAS  PubMed  Google Scholar 

  69. Nakamura Y, Okamoto W, Kato T et al (2019) TRIUMPH: Primary efficacy of a phase II trial of trastuzumab (T) and pertuzumab (P) in patients (pts) with metastatic colorectal cancer (mCRC) with HER2 (ERBB2) amplification (amp) in tumour tissue or circulating tumour DNA (ctDNA): A GOZILA sub-study. Ann Oncol 30:v199–v200

    Article  Google Scholar 

  70. Reinert T, Henriksen TV, Christensen E et al (2019) Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer. JAMA Oncol 5:1124–1131

    Article  PubMed  PubMed Central  Google Scholar 

  71. Scholer LV, Reinert T, Orntoft MW et al (2017) Clinical Implications of Monitoring Circulating Tumor DNA in Patients with Colorectal Cancer. Clin Cancer Res 23:5437–5445

    Article  CAS  PubMed  Google Scholar 

  72. Tie J, Wang Y, Tomasetti C, et al (2016) Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 8:346ra392

  73. Tarazona N, Gimeno-Valiente F, Gambardella V et al (2019) Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol 30:1804–1812

    Article  CAS  PubMed  Google Scholar 

  74. Tie J, Cohen JD, Wang Y et al (2019) Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol 5:1710–1717

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, Li L, Cohen JD et al (2019) Prognostic potential of circulating tumor DNA measurement in postoperative surveillance of nonmetastatic colorectal cancer. JAMA Oncol 5:1118–1123

    Article  PubMed  PubMed Central  Google Scholar 

  76. Reinert T, Scholer LV, Thomsen R et al (2016) Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut 65:625–634

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Q, Luo J, Wu S et al (2020) Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov 10:1842–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Avanzini S, Kurtz DM, Chabon JJ, et al (2020) A mathematical model of ctDNA shedding predicts tumor detection size. Sci Adv. 6:eabc4308

  79. Newman AM, Bratman SV, To J et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20:548–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yoshinami T, Kagara N, Motooka D, et al (2020) Detection of ctDNA with Personalized Molecular Barcode NGS and Its Clinical Significance in Patients with Early Breast Cancer. Transl Oncol 13:100787

  81. Kagawa Y, Elez E, Garcia-Foncillas J, et al (2021) Combined Analysis of Concordance between Liquid and Tumor Tissue Biopsies for RAS Mutations in Colorectal Cancer with a Single Metastasis Site: The METABEAM Study. Clin Cancer Res. doi: https://doi.org/10.1158/1078-0432.CCR-20-3677. Online ahead of print

  82. Taniguchi H, Nakamura Y, Kotani D et al (2021) CIRCULATE-Japan: Circulating tumor DNA-guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer Sci. https://doi.org/10.1111/cas.14926

    Article  PubMed  PubMed Central  Google Scholar 

  83. Habr-Gama A, Perez RO, Nadalin W et al (2004) Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 240:711–717

    Article  PubMed  PubMed Central  Google Scholar 

  84. Maas M, Beets-Tan RG, Lambregts DM et al (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29:4633–4640

    Article  PubMed  Google Scholar 

  85. Takemasa I (2020) Advances and controversies in treatment for locally advanced rectal cancer over the past decades: West meets East. Ann Gastroenterol Surg 4:314–315

    Article  PubMed  PubMed Central  Google Scholar 

  86. Petrelli F, Trevisan F, Cabiddu M et al (2020) Total neoadjuvant therapy in rectal cancer: a systematic review and meta-analysis of treatment outcomes. Ann Surg 271:440–448

    Article  PubMed  Google Scholar 

  87. Maas M, Lambregts DM, Nelemans PJ et al (2015) Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI: Selection for Organ-Saving Treatment. Ann Surg Oncol 22:3873–3880

    Article  PubMed  PubMed Central  Google Scholar 

  88. Weiser MR, Gollub MJ, Saltz LB (2015) Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI. Ann Surg Oncol 22:3769–3771

    Article  PubMed  Google Scholar 

  89. Fusco R, Petrillo M, Granata V et al (2017) Magnetic resonance imaging evaluation in neoadjuvant therapy of locally advanced rectal cancer: a systematic review. Radiol Oncol 51:252–262

    Article  PubMed  PubMed Central  Google Scholar 

  90. Joye I, Deroose CM, Vandecaveye V et al (2014) The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol 113:158–165

    Article  PubMed  Google Scholar 

  91. Tie J, Cohen JD, Wang Y et al (2019) Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut 68:663–671

    Article  CAS  PubMed  Google Scholar 

  92. Zhou J, Wang C, Lin G et al (2020) Serial Circulating Tumor DNA in Predicting and Monitoring the Effect of Neoadjuvant Chemoradiotherapy in Patients with Rectal Cancer: A Prospective Multicenter Study. Clin Cancer Res 27:301–310

    Article  PubMed  Google Scholar 

  93. Murahashi S, Akiyoshi T, Sano T et al (2020) Serial circulating tumour DNA analysis for locally advanced rectal cancer treated with preoperative therapy: prediction of pathological response and postoperative recurrence. Br J Cancer 123:803–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Khakoo S, Carter PD, Brown G et al (2020) MRI tumor regression grade and circulating tumor dna as complementary tools to assess response and guide therapy adaptation in rectal cancer. Clin Cancer Res 26:183–192

    Article  CAS  PubMed  Google Scholar 

  95. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chan KC, Jiang P, Zheng YW et al (2013) Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 59:211–224

    Article  CAS  PubMed  Google Scholar 

  97. Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  CAS  PubMed  Google Scholar 

  98. Milbury CA, Li J, Makrigiorgos GM (2009) PCR-based methods for the enrichment of minority alleles and mutations. Clin Chem 55:632–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kinde I, Wu J, Papadopoulos N et al (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA 108:9530–9535

    Article  PubMed  PubMed Central  Google Scholar 

  100. Diehl F, Li M, He Y et al (2006) BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 3:551–559

    Article  CAS  PubMed  Google Scholar 

  101. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Takemasa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takemasa, I., Hamabe, A. & Ishii, M. Perspectives for circulating tumor DNA in clinical management of colorectal cancer. Int J Clin Oncol 26, 1420–1430 (2021). https://doi.org/10.1007/s10147-021-01937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-021-01937-5

Keywords

Navigation