Skip to main content
Log in

Reclassification of Facklamia ignava, Facklamia sourekii and Facklamia tabacinasalis as Falseniella ignava gen. nov., comb. nov., Hutsoniella sourekii gen. nov., comb. nov., and Ruoffia tabacinasalis gen. nov., comb. nov., and description of Ruoffia halotolerans sp. nov., isolated from hypersaline Inland Sea of Qatar

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A Gram-stain-positive, non-pigmented, coccus-shaped, facultatively anaerobic and α-hemolytic bacterium designated as INB8T was isolated from a hypersaline marine water sample collected at the Inland Sea of Qatar. The isolate was able to grow at 25–40 °C (optimum, 30 °C), at pH 5–11 and with 2–8% NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain INB8T was placed within the family Aerococcaceae with the highest sequence similarity to Facklamia tabacinasalis CCUG 30090T (99.5%), followed by Facklamia hominis CCUG 36813T (93.9%), Facklamia sourekii Y17312T (93.8%), Facklamia ignava CCUG 37419T (93.6%), Facklamia miroungae CCUG 42728T (93.5%), Suicoccus acidiformans ZY16052T (93.5%), Facklamia languida CCUG 37842T (93.2%), Ignavigranum ruoffiae (93.1%), and Dolosicoccus paucivorans DSM 15742T (90.8%). Average nucleotide identity and digital DNA–DNA hybridization values between strain INB8T and F. tabacinasalis CCUG 30090T were determined to be 94.5% and 58.9% respectively, confirming strain INB8T represents a novel species. The major fatty acids were C14:0, C16:0, C18:0 and C18:1 ω9c. The G + C content of strain INB8T determined from the genome was 36.3 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic information, it is proposed that Facklamia tabacinasalis should be reclassified as Ruoffia tabacinasalis, Facklamia ignava be reclassified as Falseniella ignava, and Facklamia sourekii be reclassified Hutsoniella sourekii. It is further proposed that strain INB8T should be classified as a species of the genus Ruoffia for which the name Ruoffia halotolerans sp. nov. is proposed. The type strain is INB8T (= LMG 30291T = CCUG 70701T = QCC/B60/17T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The 16S rRNA gene and genome sequences of strain INB8T have been deposited in GenBank under accession numbers KU747974 and JACAOA000000000, respectively.

References

  • Amaral GRS, Dias GM, Wellington-Oguri M et al (2014) Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences. Int J Syst Evol Micr 64:357–365

    Article  CAS  Google Scholar 

  • Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K et al (2020) KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36:2251–2252

    Article  CAS  PubMed  Google Scholar 

  • Barona-Gómez F, Cruz-Morales P, Noda-García L (2012) What can genome-scale metabolic network reconstructions do for prokaryotic systematics? Antonie Van Leeuwenhoek 101:35–43

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Micr 64:316–324

    Article  Google Scholar 

  • Collins DM, Lawson PA (2009) Genus V. Facklamia. In: de Vos P, Garrity George M, Jones D, Krieg Noel R, Ludwig W et al (eds) Bergey’s manual of systematic bacteriology, vol 3 the Firmicutes. Springer, Berlin, pp 541–544

    Google Scholar 

  • Collins MD, Falsen E, Lemozy J, Åkervall E (1997) Phenotypic and phylogenetic characterization of some Globicatella-like organisms from human sources: description of Facklamia hominis gen. nov., sp. nov. Int J Syst Bacteriol 47:880–882

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Lawson PA, Monasterio R, Falsen E (1998) Facklamia ignava sp. nov., isolated from human clinical specimens. J Clin Microbiol 36:2146–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins MD, Falsen E, Sjoden B, Facklam RR (1999a) Facklamia languida sp. nov., isolated from human clinical specimens. J Clin Microbiol 37:1161–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins MD, Hutson RA, Falsen E, Sjoden B (1999b) Facklamia sourekii sp. nov., isolated from human sources. Int J Syst Bacteriol 49:635–638

    Article  PubMed  Google Scholar 

  • Collins MD, Hutson RA, Falsen E, Sjoden B (1999c) Facklamia tabacinasalis sp. nov., from powdered tobacco. Int J Syst Bacteriol 49:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Lawson PA, Monasterio R, Falsen E, Sjödén B, Facklam RR (1999d) Ignavigranum ruoffiae sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 49:97–101

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the Bootstrap. Evolution 39:783–795

    Article  PubMed  Google Scholar 

  • Fotedar R, Caldwell ME, Sankaranarayanan K et al (2020) Ningiella ruwaisensis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from marine water of the Arabian Gulf. Int J Syst Evol Micr 70:4130–4138

    Article  CAS  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Micr 57:81–91

    Article  CAS  Google Scholar 

  • Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzapfel WH, Wood BJ (2014) Lactic acid bacteria: biodiversity and taxonomy. John Wiley and Sons, New York

    Book  Google Scholar 

  • Hoyles L (1995) The genus Facklamia. In: Holzapfel WH, Wood BJ (eds) Lactic acid bacteria: biodiversity and taxonomy. Wiley Blackwell, New York, pp 91–98

    Google Scholar 

  • Hoyles L (2014) The Genus Facklamia. In: Holzapfel WH, Wood BJ (eds) Lactic acid bacteria: biodiversity and taxonomy. Wiley Blackwell, New York, pp 91–98

    Chapter  Google Scholar 

  • Hoyles L, Foster G, Falsen E, Thomson LF (2001) Facklamia miroungae sp. nov., from a juvenile southern elephant seal (Mirounga leonina). Int J Syst Evol Microbiol 51:1401–1403

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen GL, Lo Cascio PF, Land ML (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  CAS  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (2011) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2016) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucl Acids Res 45(gkw1092):D361

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson PA, Patel NB (2021) The strength of chemotaxonomy. In: Bridge P, Smith D, Stackebrandt E (eds) Trends in the systematics of bacteria and fungi. CABI Publishing, Wallingford, pp 141–167

    Google Scholar 

  • Lawson PA, Collins MD, Falsen E, Sjoden B (1999) Facklamia languida sp. nov., isolated from human clinical specimens. J Clin Microbiol 37:1161–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson PA, Sankaranarayanan K, Patel NB, Busse H-J (2016) In-silico chemotaxonomy: a tool for 21st century microbial systematics. Bergey Int Soc Microb Syst Abstr Book 2016:27

    Google Scholar 

  • Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zhao W, Li N, Li H (2019) Suicoccus acidiformans gen. nov., sp. nov., isolated from a sick pig. Int J Syst Evol Microbiol 69:1443–1451

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Meier-Kolthoff JP, Klenk HP, Göker M (2014) Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356

    Article  CAS  PubMed  Google Scholar 

  • Mistry J, Chuguransky S, Williams L et al (2020) Pfam: the protein families database in 2021. Nucl Acids Res. https://doi.org/10.1093/nar/gkaa913

    Article  PubMed  PubMed Central  Google Scholar 

  • Na SI, Kim YO, Yoon SH, Ha SM, Baek I (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    Article  CAS  PubMed  Google Scholar 

  • Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW (2020) Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.003935

    Article  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmati E, Martin V, Wong D, Sattler F (2017) Facklamia species as an under recognized pathogen. Open Forum Infect Dis, Oxford University Press, 4

  • Rios-Hernandez LA, Geig LM, Suflita JM (2003) Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Appl Environ Microbiol 69:434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RLM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr 4:e1900v1

    Google Scholar 

  • Rodriguez RLM, Konstantinidis KT (2019) Bypassing cultivation to identify bacterial species. Microbe Mag 9:111–118

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (2001) Identification of bacteria by gas chromatography of cellular fatty acids. 1 Technical Note #101

  • Schubert M, Lindgreen S, Orlando L (2016) Adapter Removal v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 9:1–7

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Nei M (2000) Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 17:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu D, Ide H, Osaki M, Sekizaki T (2006) Identification of Facklamia sourekii from a lactating cow. J Vet Med Sci 68:1225–1227

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. Methods for general and molecular microbiology, 3rd edn. American Society of Microbiology, Washington, pp 330–393

    Google Scholar 

  • Whitman WB (2014) The need for change embracing the genome. Method Microbiol 41:1–12

    Article  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant (NPRP 6-647-1-127) from the Qatar National Research Fund (a member of Qatar Foundation) to Rashmi Fotedar, We thank Aharon Oren (The Hebrew University of Jerusalem, Israel) for advice on naming the organism.

Author information

Authors and Affiliations

Authors

Contributions

RF and PL designed research and project outline. RF, AZ, AM, RK, MM, HM performed collection, isolation, phenotypic and biochemical characterisation and 16S rRNA gene sequencing. MC performed the chemotaxonomic characterisation and repeat sequencing of 16S rRNA gene and KS performed the genome analysis. RF, PL and KS drafted the MS. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Rashmi Fotedar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10482_2021_1587_MOESM1_ESM.eps

Maximum-likelihood tree phylogenetic tree based on MurE gene demonstrating the relationship between INB8T and close relatives (EPS 2543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotedar, R., Sankaranarayanan, K., Caldwell, M.E. et al. Reclassification of Facklamia ignava, Facklamia sourekii and Facklamia tabacinasalis as Falseniella ignava gen. nov., comb. nov., Hutsoniella sourekii gen. nov., comb. nov., and Ruoffia tabacinasalis gen. nov., comb. nov., and description of Ruoffia halotolerans sp. nov., isolated from hypersaline Inland Sea of Qatar. Antonie van Leeuwenhoek 114, 1181–1193 (2021). https://doi.org/10.1007/s10482-021-01587-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01587-7

Keywords

Navigation