Skip to main content
Log in

Molecular Regulation of Lysophosphatidic Acid Receptor 1 Maturation and Desensitization

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Lysophosphatidic acid receptor 1 (LPA1) belongs to the G protein-coupled receptor family. The ligand for LPA1 is LPA, the simplest lysophospholipid. LPA is considered a growth factor and induces cell proliferation, anti-apoptosis, and cell migration. The pro-inflammatory and pro-fibrotic roles of LPA have also been well-demonstrated. Most of the biological functions of LPA are mostly executed through LPA1. The mature form of LPA1 is glycosylated and localized on the plasma membrane. LPA1 is bound to heterotrimetric G proteins and transduces intracellular signaling in response to ligation to LPA. Desensitization of LPA1 negatively regulates LPA1-mediated signaling and the resulting biological functions. Phosphorylation and ubiquitination are well-demonstrated posttranslational modifications of GPCR. In this review, we will discuss our knowledge of LPA1 glycosylation, maturation, and trafficking from the endoplasmic reticulum (ER)/Golgi to the plasma membrane. Moreover, in light of recent findings, we will also discuss molecular regulation of LPA1 internalization and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

LPA:

lysophosphatidic acid

GPCR:

G protein-coupled receptor

ER:

endoplasmic reticulum

ERK:

extracellular signal-regulated kinase

PI3K:

phosphatidylinositol-3-kinase

COPII:

coat protein complex II

SNPs:

single nucleotide polymorphisms

GRK2:

GPCR kinase 2

EGFR:

epidermal growth factor receptor

TrkA:

tropomyosin receptor kinase A

ERAD:

ER-associated degradation

PKC:

protein kinase C

FFA4:

free fatty acid receptor 4

PMA:

phorbol ester

LPS:

lipopolysaccharide

PROTACs:

proteolysis-targeting chimeras.

References

  1. Selbie, L. A., & Hill, S. J. (1998). G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. Trends in Pharmacological Sciences, 19, 87–93.

    Article  CAS  PubMed  Google Scholar 

  2. Stevens, R. C., Cherezov, V., Katritch, V., Abagyan, R., Kuhn, P., Rosen, H., & Wuthrich, K. (2013). The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nature Reviews Drug Discovery, 12, 25–34.

    Article  CAS  PubMed  Google Scholar 

  3. Pavlos, N. J., & Friedman, P. A. (2017). GPCR Signaling and Trafficking: the Long and Short of It. Trends in Endocrinology & Metabolism, 28, 213–226.

    Article  CAS  Google Scholar 

  4. Zhang, D., Zhao, Q., & Wu, B. (2015). Structural Studies of G Protein-Coupled Receptors. Molecular Cells, 38, 836–842.

    Article  CAS  Google Scholar 

  5. Becker, O. M., Shacham, S., Marantz, Y., & Noiman, S. (2003). Modeling the 3D structure of GPCRs: advances and application to drug discovery. Current Opinion in Drug Discovery & Development, 6, 353–361.

    CAS  Google Scholar 

  6. Fang, Y., Lahiri, J., & Picard, L. (2003). G protein-coupled receptor microarrays for drug discovery. Drug Discovery Today, 8, 755–761.

    Article  CAS  PubMed  Google Scholar 

  7. Congreve, M., Dias, J. M., & Marshall, F. H. (2014). Structure-based drug design for G protein-coupled receptors. Progress in Medicinal Chemistry, 53, 1–63.

    Article  CAS  PubMed  Google Scholar 

  8. Congreve, M., de Graaf, C., Swain, N. A., & Tate, C. G. (2020). Impact of GPCR Structures on Drug Discovery. Cell, 181, 81–91.

    Article  CAS  PubMed  Google Scholar 

  9. Barak, L. S., Wilbanks, A. M., & Caron, M. G. (2003). Constitutive desensitization: a new paradigm for g protein-coupled receptor regulation. Assay and Drug Development Technologies, 1, 339–346.

    Article  CAS  PubMed  Google Scholar 

  10. Rajagopal, S., & Shenoy, S. K. (2018). GPCR desensitization: acute and prolonged phases. Cell Signaling, 41, 9–16.

    Article  CAS  Google Scholar 

  11. Evron, T., Daigle, T. L., & Caron, M. G. (2012). GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends in Pharmacological Sciences, 33, 154–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hla, T., Jackson, A. Q., Appleby, S. B., & Maciag, T. (1995). Characterization of edg-2, a human homologue of the Xenopus maternal transcript G10 from endothelial cells. Biochimica et Biophysica Acta, 1260, 227–229.

    Article  PubMed  Google Scholar 

  13. An, S., Dickens, M. A., Bleu, T., Hallmark, O. G., & Goetzl, E. J. (1997). Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochemical and Biophysical Research Communications, 231, 619–622.

    Article  CAS  PubMed  Google Scholar 

  14. Fukushima, N., Kimura, Y., & Chun, J. (1998). A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proceedings of the National Academy of Sciences of the U S A, 95, 6151–6156.

    Article  CAS  Google Scholar 

  15. Moolenaar, W. H. (1994). LPA: a novel lipid mediator with diverse biological actions. Trends in Cell Biology, 4, 213–219.

    Article  CAS  PubMed  Google Scholar 

  16. Sengupta, S., Wang, Z., Tipps, R., & Xu, Y. (2004). Biology of LPA in health and disease. Seminars in Cell and Development Biology, 15, 503–512.

    Article  CAS  Google Scholar 

  17. Pages, C., Simon, M. F., Valet, P., & Saulnier-Blache, J. S. (2001). Lysophosphatidic acid synthesis and release. Prostaglandins & Other Lipid Mediators, 64, 1–10.

    Article  CAS  Google Scholar 

  18. Xie, Y., & Meier, K. E. (2004). Lysophospholipase D and its role in LPA production. Cell Signaling, 16, 975–981.

    Article  CAS  Google Scholar 

  19. Zhao, Y., & Natarajan, V. (2009). Lysophosphatidic acid signaling in airway epithelium: role in airway inflammation and remodeling. Cell Signaling, 21, 367–377.

    Article  CAS  Google Scholar 

  20. Zhao, Y., & Natarajan, V. (2013). Lysophosphatidic acid (LPA) and its receptors: role in airway inflammation and remodeling. Biochimica et Biophysica Acta, 1831, 86–92.

    Article  CAS  PubMed  Google Scholar 

  21. Daaka, Y. (2002). Mitogenic action of LPA in prostate. Biochimica et Biophysica Acta, 1582, 265–269.

    Article  CAS  PubMed  Google Scholar 

  22. Fang, X., Schummer, M., Mao, M., Yu, S., Tabassam, F. H., Swaby, R., Hasegawa, Y., Tanyi, J. L., LaPushin, R., Eder, A., Jaffe, R., Erickson, J., & Mills, G. B. (2002). Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochimica et Biophysica Acta, 1582, 257–264.

    Article  CAS  PubMed  Google Scholar 

  23. Valdes-Rives, S. A., & Gonzalez-Arenas, A. (2017). Autotaxin-Lysophosphatidic Acid: from Inflammation to Cancer Development. Mediators of Inflammation, 2017, 9173090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Murph, M. M., Nguyen, G. H., Radhakrishna, H., & Mills, G. B. (2008). Sharpening the edges of understanding the structure/function of the LPA1 receptor: expression in cancer and mechanisms of regulation. Biochimica et Biophysica Acta, 1781, 547–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yung, Y. C., Stoddard, N. C., & Chun, J. (2014). LPA receptor signaling: pharmacology, physiology, and pathophysiology. Journal of Lipid Research, 55, 1192–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, M. K., Lee, H. Y., Park, K. S., Shin, E. H., Jo, S. H., Yun, J., Lee, S. W., Yoo, Y. H., Lee, Y. S., Baek, S. H., & Bae, Y. S. (2005). Lysophosphatidic acid stimulates cell proliferation in rat chondrocytes. Biochemical Pharmacology, 70, 1764–1771.

    Article  CAS  PubMed  Google Scholar 

  27. Billon-Denis, E., Tanfin, Z., & Robin, P. (2008). Role of lysophosphatidic acid in the regulation of uterine leiomyoma cell proliferation by phospholipase D and autotaxin. Journal of Lipid Research, 49, 295–307.

    Article  CAS  PubMed  Google Scholar 

  28. Du, J., Sun, C., Hu, Z., Yang, Y., Zhu, Y., Zheng, D., Gu, L., & Lu, X. (2010). Lysophosphatidic acid induces MDA-MB-231 breast cancer cells migration through activation of PI3K/PAK1/ERK signaling. PLoS ONE, 5, e15940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, S., Jiang, H., Min, L., Ning, T., Xu, J., Wang, T., Wang, X., Zhang, Q., Cao, R., Zhang, S. & Zhu, S. (2020). Lysophosphatidic acid mediated PI3K/AKT activation contributed to esophageal squamous cell cancer progression. Carcinogenesis, 42, 611–620.

    Article  Google Scholar 

  30. Liu, Y., Chen, F., Ji, L., Zhang, L., Xu, Y. J., & Dhalla, N. S. (2020). Role of lysophosphatidic acid in vascular smooth muscle cell proliferation. Canadian Journal of Physiology and Pharmacology, 98, 103–110.

    Article  CAS  PubMed  Google Scholar 

  31. Van Leeuwen, F. N., Olivo, C., Grivell, S., Giepmans, B. N., Collard, J. G., & Moolenaar, W. H. (2003). Rac activation by lysophosphatidic acid LPA1 receptors through the guanine nucleotide exchange factor Tiam1. Journal of Biological Chemistry, 278, 400–406.

    Article  CAS  PubMed  Google Scholar 

  32. Wei, J., Mialki, R. K., Dong, S., Khoo, A., Mallampalli, R. K., Zhao, Y., & Zhao, J. (2013). A new mechanism of RhoA ubiquitination and degradation: roles of SCF(FBXL19) E3 ligase and Erk2. Biochimica et Biophysica Acta, 1833, 2757–2764.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, J., Mialki, R. K., Wei, J., Coon, T. A., Zou, C., Chen, B. B., Mallampalli, R. K., & Zhao, Y. (2013). SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB Journal, 27, 2611–2619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, D., Li, H. Y., Lee, J. H., Oh, Y. S., & Jun, H. S. (2019). Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling. Experimental and Molecular Medicine, 51, 1–10.

    PubMed  PubMed Central  Google Scholar 

  35. Pilquil, C., Dewald, J., Cherney, A., Gorshkova, I., Tigyi, G., English, D., Natarajan, V., & Brindley, D. N. (2006). Lipid phosphate phosphatase-1 regulates lysophosphatidate-induced fibroblast migration by controlling phospholipase D2-dependent phosphatidate generation. Journal of Biological Chemistry, 281, 38418–38429.

    Article  CAS  PubMed  Google Scholar 

  36. Schmitz, U., Thommes, K., Beier, I., & Vetter, H. (2002). Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 291, 687–691.

    Article  CAS  PubMed  Google Scholar 

  37. van Nieuw Amerongen, G. P., Vermeer, M. A., & van Hinsbergh, V. W. (2000). Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arteriosclerosis Thrombosis and Vascular Biology, 20, E127–133.

    PubMed  Google Scholar 

  38. Wang, J., Sun, Y., Qu, J., Yan, Y., Yang, Y., & Cai, H. (2016). Roles of LPA receptor signaling in breast cancer. Expert Review of Molecular Diagnostics, 16, 1103–1111.

    Article  CAS  PubMed  Google Scholar 

  39. Park, J., Jang, J. H., Oh, S., Kim, M., Shin, C., Jeong, M., Heo, K., Park, J. B., Kim, S. R., & Oh, Y. S. (2018). LPA-induced migration of ovarian cancer cells requires activation of ERM proteins via LPA1 and LPA2. Cell Signaling, 44, 138–147.

    Article  CAS  Google Scholar 

  40. Plastira, I., Bernhart, E., Goeritzer, M., Reicher, H., Kumble, V. B., Kogelnik, N., Wintersperger, A., Hammer, A., Schlager, S., Jandl, K., Heinemann, A., Kratky, D., Malle, E., & Sattler, W. (2016). 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype. Journal of Neuroinflammation, 13, 205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kim, J., Hwang, Y. S., Chung, A. M., Chung, B. G., & Khademhosseini, A. (2012). Liver cell line derived conditioned medium enhances myofibril organization of primary rat cardiomyocytes. Molecular Cells, 34, 149–158.

    Article  CAS  Google Scholar 

  42. Zhao, J., Wei, J., Weathington, N., Jacko, A. M., Huang, H., Tsung, A., & Zhao, Y. (2015). Lysophosphatidic acid receptor 1 antagonist ki16425 blunts abdominal and systemic inflammation in a mouse model of peritoneal sepsis. Translation Research, 166, 80–88.

    Article  CAS  Google Scholar 

  43. Kwon, J. H., Gaire, B. P., Park, S. J., Shin, D. Y., & Choi, J. W. (2018). Identifying lysophosphatidic acid receptor subtype 1 (LPA1) as a novel factor to modulate microglial activation and their TNF-alpha production by activating ERK1/2. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1863, 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  44. Tager, A. M., LaCamera, P., Shea, B. S., Campanella, G. S., Selman, M., Zhao, Z., Polosukhin, V., Wain, J., Karimi-Shah, B. A., Kim, N. D., Hart, W. K., Pardo, A., Blackwell, T. S., Xu, Y., Chun, J., & Luster, A. D. (2008). The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nature Medicine, 14, 45–54.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, J., He, D., Su, Y., Berdyshev, E., Chun, J., Natarajan, V., & Zhao, Y. (2011). Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 301, L547–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He, D., Su, Y., Usatyuk, P. V., Spannhake, E. W., Kogut, P., Solway, J., Natarajan, V., & Zhao, Y. (2009). Lysophosphatidic acid enhances pulmonary epithelial barrier integrity and protects endotoxin-induced epithelial barrier disruption and lung injury. Journal of Biological Chemistry, 284, 24123–24132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, X., Walther, F. J., Laghmani, E. H., Hoogeboom, A. M., Hogen-Esch, A. C., van Ark, I., Folkerts, G., & Wagenaar, G. T. (2017). Adult Lysophosphatidic Acid Receptor 1-Deficient Rats with Hyperoxia-Induced Neonatal Chronic Lung Disease Are Protected against Lipopolysaccharide-Induced Acute Lung Injury. Frontiers in Physiology, 8, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dong, C., Filipeanu, C. M., Duvernay, M. T., & Wu, G. (2007). Regulation of G protein-coupled receptor export trafficking. Biochimics et Biophysica Acta, 1768, 853–870.

    Article  CAS  Google Scholar 

  49. Min, C., Zheng, M., Zhang, X., Guo, S., Kwon, K. J., Shin, C. Y., Kim, H. S., Cheon, S. H., & Kim, K. M. (2015). N-linked Glycosylation on the N-terminus of the dopamine D2 and D3 receptors determines receptor association with specific microdomains in the plasma membrane. Biochimica et Biophysica Acta, 1853, 41–51.

    Article  CAS  PubMed  Google Scholar 

  50. Lanctot, P. M., Leclerc, P. C., Clement, M., Auger-Messier, M., Escher, E., Leduc, R., & Guillemette, G. (2005). Importance of N-glycosylation positioning for cell-surface expression, targeting, affinity and quality control of the human AT1 receptor. Biochemical Journal, 390, 367–376.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhao, J., Wei, J., Bowser, R. K., Dong, S., Xiao, S., & Zhao, Y. (2014). Molecular regulation of lysophosphatidic acid receptor 1 trafficking to the cell surface. Cell Signal, 26, 2406–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Varsano, T., Taupin, V., Guo, L., Baterina, Jr, O. Y., & Farquhar, M. G. (2012). The PDZ protein GIPC regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates the cell’s response to LPA. PLoS ONE, 7, e49227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suckau, O., Gross, I., Schrotter, S., Yang, F., Luo, J., Wree, A., Chun, J., Baska, D., Baumgart, J., Kano, K., Aoki, J., & Brauer, A. U. (2019). LPA1, LPA2, LPA4, and LPA6 receptor expression during mouse brain development. Developmental Dynamics, 248, 375–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tao, Y. X., & Conn, P. M. (2014). Chaperoning G protein-coupled receptors: from cell biology to therapeutics. Endocrine Reviews, 35, 602–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chrencik, J. E., Roth, C. B., Terakado, M., Kurata, H., Omi, R., Kihara, Y., Warshaviak, D., Nakade, S., Asmar-Rovira, G., Mileni, M., Mizuno, H., Griffith, M. T., Rodgers, C., Han, G. W., Velasquez, J., Chun, J., Stevens, R. C., & Hanson, M. A. (2015). Crystal Structure of Antagonist Bound Human Lysophosphatidic Acid Receptor 1. Cell, 161, 1633–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ishii, S., Tsujiuchi, T., & Fukushima, N. (2017). Functional characterization of lysophosphatidic acid receptor 1 mutants identified in rat cancer tissues. Biochemical and Biophysical Research Communcations, 486, 767–773.

    Article  CAS  Google Scholar 

  57. Probst, W. C., Snyder, L. A., Schuster, D. I., Brosius, J., & Sealfon, S. C. (1992). Sequence alignment of the G-protein coupled receptor superfamily. DNA and Cell Biology, 11, 1–20.

    Article  CAS  PubMed  Google Scholar 

  58. Wu, G., Davis, J. E., & Zhang, M. (2015). Regulation of alpha2B-Adrenerigc Receptor Export Trafficking by Specific Motifs. Progress in Molecular Biology & Translation Science, 132, 227–244.

    Article  Google Scholar 

  59. Ragnarsson, L., Andersson, A., Thomas, W. G., and Lewis, R. J. (2019). Mutations in the NPxxY motif stabilize pharmacologically distinct conformational states of the alpha1B- and beta2-adrenoceptors. Science Signaling, 12, eaas9485.

  60. Calebiro, D., & Godbole, A. (2018). Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases. Best Practice & Research Clinical Endocrinology & Metabolism, 32, 83–91.

    Article  CAS  Google Scholar 

  61. Gonda, A., Kabagwira, J., Senthil, G. N., & Wall, N. R. (2019). Internalization of Exosomes through Receptor-Mediated Endocytosis. Molecular Cancer Research, 17, 337–347.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, J., Wei, J., Dong, S., Bowser, R. K., Zhang, L., Jacko, A. M., & Zhao, Y. (2016). Destabilization of Lysophosphatidic Acid Receptor 1 Reduces Cytokine Release and Protects Against Lung Injury. EBioMedicine, 10, 195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Alcantara-Hernandez, R., Hernandez-Mendez, A., Campos-Martinez, G. A., Meizoso-Huesca, A., & Garcia-Sainz, J. A. (2015). Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3. PLoS ONE, 10, e0140583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Meizoso-Huesca, A., Villegas-Comonfort, S., Romero-Avila, M. T., & Garcia-Sainz, J. A. (2018). Free fatty acid receptor 4 agonists induce lysophosphatidic acid receptor 1 (LPA1) desensitization independent of LPA1 internalization and heterodimerization. FEBS Letters, 592, 2612–2623.

    Article  CAS  PubMed  Google Scholar 

  65. Nan, L., Wei, J., Jacko, A. M., Culley, M. K., Zhao, J., Natarajan, V., Ma, H., & Zhao, Y. (2016). Cross-talk between lysophosphatidic acid receptor 1 and tropomyosin receptor kinase A promotes lung epithelial cell migration. Biochimica et Biophysica Acta, 1863, 229–235.

    Article  CAS  PubMed  Google Scholar 

  66. Avendano-Vazquez, S. E., Garcia-Caballero, A., & Garcia-Sainz, J. A. (2005). Phosphorylation and desensitization of the lysophosphatidic acid receptor LPA1. Biochemical Journal, 385, 677–684.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Urs, N. M., Kowalczyk, A. P., & Radhakrishna, H. (2008). Different mechanisms regulate lysophosphatidic acid (LPA)-dependent versus phorbol ester-dependent internalization of the LPA1 receptor. Journal of Biological Chemistry, 283, 5249–5257.

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez-Arenas, A., Avendano-Vazquez, S. E., Cabrera-Wrooman, A., Tapia-Carrillo, D., Larrea, F., Garcia-Becerra, R., & Garcia-Sainz, J. A. (2008). Regulation of LPA receptor function by estrogens. Biochimica et Biophysica Acta, 1783, 253–262.

    Article  CAS  PubMed  Google Scholar 

  69. Urs, N. M., Jones, K. T., Salo, P. D., Severin, J. E., Trejo, J., & Radhakrishna, H. (2005). A requirement for membrane cholesterol in the beta-arrestin- and clathrin-dependent endocytosis of LPA1 lysophosphatidic acid receptors. Journal of Cell Science, 118, 5291–5304.

    Article  CAS  PubMed  Google Scholar 

  70. Colin-Santana, C. C., Avendano-Vazquez, S. E., Alcantara-Hernandez, R., & Garcia-Sainz, J. A. (2011). EGF and angiotensin II modulate lysophosphatidic acid LPA(1) receptor function and phosphorylation state. Biochimica et Biophysica Acta, 1810, 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  71. Mettlen, M., Chen, P. H., Srinivasan, S., Danuser, G., & Schmid, S. L. (2018). Regulation of Clathrin-Mediated Endocytosis. Annual Review of Biochemistry, 87, 871–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takei, K., & Haucke, V. (2001). Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends in Cell Biology, 11, 385–391.

    Article  CAS  PubMed  Google Scholar 

  73. Murph, M. M., Scaccia, L. A., Volpicelli, L. A., & Radhakrishna, H. (2003). Agonist-induced endocytosis of lysophosphatidic acid-coupled LPA1/EDG-2 receptors via a dynamin2- and Rab5-dependent pathway. Journal of Cell Science, 116, 1969–1980.

    Article  CAS  PubMed  Google Scholar 

  74. Weinberg, Z. Y., & Puthenveedu, M. A. (2019). Regulation of G protein-coupled receptor signaling by plasma membrane organization and endocytosis. Traffic, 20, 121–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marchese, A., Paing, M. M., Temple, B. R., & Trejo, J. (2008). G protein-coupled receptor sorting to endosomes and lysosomes. Annual Review of Pharmacology and Toxicology, 48, 601–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Waters, C. M., Saatian, B., Moughal, N. A., Zhao, Y., Tigyi, G., Natarajan, V., Pyne, S., & Pyne, N. J. (2006). Integrin signalling regulates the nuclear localization and function of the lysophosphatidic acid receptor-1 (LPA1) in mammalian cells. Biochemical Journal, 398, 55–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Moughal, N. A., Waters, C., Sambi, B., Pyne, S., & Pyne, N. J. (2004). Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells. Cell Signal, 16, 127–136.

    Article  CAS  PubMed  Google Scholar 

  78. Zhu, T., Gobeil, F., Vazquez-Tello, A., Leduc, M., Rihakova, L., Bossolasco, M., Bkaily, G., Peri, K., Varma, D. R., Orvoine, R., & Chemtob, S. (2006). Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: a paradigm based on PGE2, PAF, and LPA1 receptors. Canadian Journal of Physiology and Pharmacology, 84, 377–391.

    Article  CAS  PubMed  Google Scholar 

  79. Skieterska, K., Rondou, P., & Van Craenenbroeck, K. (2017) Regulation of G Protein-Coupled Receptors by Ubiquitination. International Journal of Molecular Sciences, 18, 923.

  80. Alonso, V., & Friedman, P. A. (2013). Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Molecular Endocrinology, 27, 558–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsai, Y. C., & Weissman, A. M. (2011). Ubiquitylation in ERAD: reversing to go forward? PLoS Biology, 9, e1001038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Popovic, D., Vucic, D., & Dikic, I. (2014). Ubiquitination in disease pathogenesis and treatment. Nature Medicine, 20, 1242–1253.

    Article  CAS  PubMed  Google Scholar 

  83. Taleb, S. J., Wei, J., Mialki, R. K., Dong, S., Li, Y., Zhao, J., & Zhao, Y. (2021). A blocking peptide stabilizes lysophosphatidic acid receptor 1 and promotes lysophosphatidic acid-induced cellular responses. Journal of Cellular Biochemistry. in press

  84. Cai, J., Culley, M. K., Zhao, Y., & Zhao, J. (2018). The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell, 9, 754–769.

    Article  CAS  PubMed  Google Scholar 

  85. Harrigan, J. A., Jacq, X., Martin, N. M., & Jackson, S. P. (2018). Deubiquitylating enzymes and drug discovery: emerging opportunities. Nature Reviews Drug Discovery, 17, 57–78.

    Article  CAS  PubMed  Google Scholar 

  86. Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry, 78, 363–397.

    Article  CAS  PubMed  Google Scholar 

  87. Paiva, S. L., & Crews, C. M. (2019). Targeted protein degradation: elements of PROTAC design. Current Opinion in Chemical Biology, 50, 111–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Neklesa, T. K., Winkler, J. D., & Crews, C. M. (2017). Targeted protein degradation by PROTACs. Pharmacology & Therapeutics, 174, 138–144.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Institutes of Health (R01HL131665, R01HL157164, HL136294 to Y.Z., R01 GM115389, R01HL151513 to J.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutong Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Stephens, T. & Zhao, Y. Molecular Regulation of Lysophosphatidic Acid Receptor 1 Maturation and Desensitization. Cell Biochem Biophys 79, 477–483 (2021). https://doi.org/10.1007/s12013-021-00999-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00999-6

Keywords

Navigation