Skip to main content

Advertisement

Log in

Environmental Effects of Temperature and Water Potential on Mycelial Growth of Neocosmospora solani and Fusarium spp. Causing Dry Root Rot of Citrus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study aimed at evaluating the effect of environmental factors temperature and water potential (Ψw) on the growth of Neocosmospora (Fusarium) solani and three Fusarium species (F. oxysporum, F. equiseti and F. brachygibbosum) associated with citrus dry root rot and to determine the optimum and marginal rate for their growth. The effects of incubation temperature (540 °C), water potentials (Ψw) (− 15.54; − 0.67 MPa) (0.890.995 aw) and their interaction (530 °C) was evaluated on the in vitro radial growth rates of Fusarium spp. and on their lag phase. Secondary models were used to model the combined effect of these factors on radial growth rate. The results underlined a highly significant effects (P < 0.001) of Ψw and temperature and their interactions on radial growth rates and lag phases (λ). The Four studied species were shown tolerant to a temperature of 35 °C with an optimum mycelial growth at 30 for N. solani and F. oxysporum and at 25 °C for F. equiseti and F. brachygibbosum. However, no growth was observed at both temperatures 5 and 40 °C and at Ψw of − 9.68 MPa (0.93 aw). The optimum water potential for growth was ≥− 2.69 MPA (>0.98 aw). The results from the polynomial model and response surface showing good agreement between observed and predicted values. The external validation on citrus fruit indicated slight differences between predicted and observed values of radial growth. The results of this study will be beneficial for understanding the ecological knowledge of these species and thereby limited preventively their occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jaouad M, Moinina A, Ezrari S, Lahlali R (2020) Key pests and diseases of citrus trees with emphasis on root rot diseases: an overview. Moroc J Agric Sci 1:149–160

    Google Scholar 

  2. Olsen M, Matheron M, McClure M, Xiong Z (2000) Diseases of citrus in Arizona. Coll Agric Life Sci Univ Arizona, Tucson, pp 1–15

    Google Scholar 

  3. Ezrari S, Lahlali R, Radouane N et al (2020) Characterization of Fusarium species causing dry root rot disease of citrus trees in Morocco. J Plant Dis Prot. https://doi.org/10.1007/s41348-020-00392-0

    Article  Google Scholar 

  4. Yaseen T, D’Onghia AM (2012) Fusarium spp. associated to citrus dry root rot: an emerging issue for Mediterranean citriculture. Acta Hortic 940:647–656. https://doi.org/10.17660/actahortic.2012.940.89

    Article  Google Scholar 

  5. Adesemoye A, Eskalen A, Faber B et al (2011) Fusarium dry rot of citrus. Citrograph 2:29–33

    Google Scholar 

  6. Sandoval-denis MP, Guarnaccia V, Polizzi G, Crous PW (2018) Symptomatic citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Persoonia Mol Phylogeny Evol Fungi 40:1–25. https://doi.org/10.3767/persoonia.2018.40.01

    Article  CAS  Google Scholar 

  7. Khouja HR, Yaseen T, Cherif M, Ippolito A (2008) Etiological and epidemiological aspects of dry root rot in nurseries and orchards in Tunisia. Proc. Int. Soc. Citriculture: Paper No. P406

  8. Lombard L, van der Merwe NA, Groenewald JZ, Crous PW (2015) Generic concepts in Nectriaceae. Stud Mycol 80:189–245. https://doi.org/10.1016/j.simyco.2014.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fogliata GM, Martínez CV, Acosta ME et al (2013) First report of Fusarium rot caused by Fusarium oxysporum on lemon in Tucumán. Argentina Plant Dis 97:989

    Article  CAS  Google Scholar 

  10. Khamis Y, Hashim AF, Margarita R et al (2017) Fungicidal efficacy of chemically-produced copper nanoparticles against Penicillium digitatum and Fusarium solani on citrus fruit. Philipp Agric Sci 100:69–78

    Google Scholar 

  11. Moosa A, Farzand A, Sahi ST et al (2020) First report of post-harvest Fusarium rot caused by Fusarium oxysporum on Citrus reticulata Blanco cv. ‘Kinnow’ in Pakistan. J Plant Pathol 102:945–946. https://doi.org/10.1007/s42161-020-00521-6

    Article  Google Scholar 

  12. Hasan MF, Islam MA, Sikdar B (2021) First report on molecular identification of Fusarium species causing fruit rot of mandarin (Citrus reticulata) in Bangladesh. F1000Research 9:1–9. https://doi.org/10.12688/f1000research.26464.1

    Article  CAS  Google Scholar 

  13. Polizzi G, di San M, Lio G, Catara A (1992) Dry root rot of citranges in Italy. Proc Int Soc Citric VII Int Citrus Congr Acireale 1992:890–893

    Google Scholar 

  14. Labuschagne N, Van Der Vegte FA, Kotzé JM (1989) Interaction between Fusarium solani and Tylenchulus semipenetrans on citrus roots. Phytophylactica 21:29–33

    Google Scholar 

  15. Timmusk S, Nevo E, Ayele F et al (2020) Fighting Fusarium pathogens in the era of climate change: a conceptual approach. Pathogens. https://doi.org/10.3390/pathogens9060419

    Article  PubMed  PubMed Central  Google Scholar 

  16. Timmer LW (1982) Host range and host colonization, temperature effects, and dispersal of Fusarium oxysporum f. sp. citri. Phytopathology. https://doi.org/10.1094/Phyto-77-698

    Article  Google Scholar 

  17. Lagrini K, Ghafiri A, Ouali A et al (2020) Application of geographical information system (GIS) for the development of climatological air temperature vulnerability maps: an example from Morocco. Meteorol Appl 27:1–17. https://doi.org/10.1002/met.1871

    Article  Google Scholar 

  18. Kurt Ş, Uysal A, Soylu EM et al (2020) Characterization and pathogenicity of Fusarium solani associated with dry root rot of citrus in the eastern Mediterranean region of Turkey. J Gen Plant Pathol 20:127. https://doi.org/10.1007/s10327-020-00922-6

    Article  CAS  Google Scholar 

  19. Malikoutsaki-Mathioudi M, Bourbos VA, Skoudridakis MT (1987) La pourriture sèche des racines—une maladie très grave des agrumes en Grèce. EPPO Bull 17:335–340. https://doi.org/10.1111/j.1365-2338.1987.tb00046.x

    Article  Google Scholar 

  20. Velásquez AC, Castroverde CDM, He SY (2018) Plant-pathogen warfare under changing climate conditions. Curr Biol 28:R619–R634. https://doi.org/10.1016/j.cub.2018.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marín P, de Ory A, Cruz A et al (2013) Potential effects of environmental conditions on the efficiency of the antifungal tebuconazole controlling Fusarium verticillioides and Fusarium proliferatum growth rate and fumonisin biosynthesis. Int J Food Microbiol 165:251–258. https://doi.org/10.1016/j.ijfoodmicro.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  22. Guarnaccia V, Van NJ, Crous PW, Sandoval-Denis M (2021) Neocosmospora spp. associated with dry root rot of citrus in South Africa. Phytopathol Mediterr 60:81–102

    Article  Google Scholar 

  23. Hudec K, Muchová D (2010) Influence of temperature and species origin on Fusarium spp. and Microdochium nivale pathogenicity to wheat seedlings. Plant Prot Sci 46:59–65. https://doi.org/10.17221/12/2009-pps

    Article  Google Scholar 

  24. Medina A, Magan N (2010) Comparisons of water activity and temperature impacts on growth of Fusarium langsethiae strains from northern Europe on oat-based media. Int J Food Microbiol 142:365–369. https://doi.org/10.1016/j.ijfoodmicro.2010.07.021

    Article  CAS  PubMed  Google Scholar 

  25. Palacios S, Casasnovas F, Ramirez ML et al (2014) Impact of water potential on growth and germination of Fusarium solani soilborne pathogen of peanut. Braz J Microbiol 45:1105–1112. https://doi.org/10.1590/S1517-83822014000300046

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ramirez ML, Chulze S, Magan N (2006) Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Int J Food Microbiol 106:291–296. https://doi.org/10.1016/j.ijfoodmicro.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  27. Krueger RR, Bender GS (2015) Screening a core collection of citrus genetic resources for resistance to Fusarium solani. Acta Hortic 1065:155–164. https://doi.org/10.17660/ActaHortic.2015.1065.15

    Article  Google Scholar 

  28. Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. https://doi.org/10.1016/0168-1605(94)90157-0

    Article  PubMed  Google Scholar 

  29. Lahlali R, Serrhini MN, Friel D, Jijakli MH (2007) Predictive modelling of temperature and water activity (solutes) on the in vitro radial growth of Botrytis cinerea Pers. Int J Food Microbiol 114:1–9. https://doi.org/10.1016/j.ijfoodmicro.2006.11.004

    Article  PubMed  Google Scholar 

  30. Marin S, Sanchis V, Magan N (1995) Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Can J Microbiol 41:1063–1070. https://doi.org/10.1139/m95-149

    Article  CAS  PubMed  Google Scholar 

  31. Lahlali R, Serrhini MN, Jijakli MH (2005) Studying and modelling the combined effect of temperature and water activity on the growth rate of P. expansum. Int J Food Microbiol 103:315–322. https://doi.org/10.1016/j.ijfoodmicro.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  32. Marín S, Cuevas D, Ramos AJ, Sanchis V (2008) Fitting of colony diameter and ergosterol as indicators of food borne mould growth to known growth models in solid medium. Int J Food Microbiol 121:139–149. https://doi.org/10.1016/j.ijfoodmicro.2007.08.030

    Article  CAS  PubMed  Google Scholar 

  33. Gibson AM, Baranyi J, Pitt JI et al (1994) Predicting fungal growth: the effect of water activity on Aspergillus flavus and related species. Int J Food Microbiol 23:419–431

    Article  CAS  Google Scholar 

  34. Ross T (1996) Indices for performance evaluation of predictive models in food microbiology. J Appl Bacteriol 81:501–508

    CAS  PubMed  Google Scholar 

  35. Lahlali R, Serrhini MN, Friel D, Jijakli MH (2006) In vitro effects of water activity, temperature and solutes on the growth rate of P. italicum Wehmer and P. digitatum Sacc. J Appl Microbiol 101:628–636. https://doi.org/10.1111/j.1365-2672.2006.02953.x

    Article  CAS  PubMed  Google Scholar 

  36. Samapundo S, Devlieghere F, De Meulenaer B et al (2005) Predictive modelling of the individual and combined effect of water activity and temperature on the radial growth of Fusarium verticilliodes and F. proliferatum on corn. Int J Food Microbiol 105:35–52. https://doi.org/10.1016/j.ijfoodmicro.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  37. Dantigny P, Guilmart A, Radoi F et al (2005) Modelling the effect of ethanol on growth rate of food spoilage moulds. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2004.07.008

    Article  PubMed  Google Scholar 

  38. Hibar K, Daami-Remadi M, Jabnoun-Khiareddine H et al (2006) Effet des extraits de compost sur la croissance mycélienne et l’agressivité du Fusarium oxysporum f. sp. radicis lycopersici. Biotechnol Agron Soc Environ 10:101–108

    Google Scholar 

  39. Frans M, Aerts R, Van Laethem S, Ceusters J (2017) Environmental effects on growth and sporulation of Fusarium spp. causing internal fruit rot in bell pepper. Eur J Plant Pathol 149:875–883. https://doi.org/10.1007/s10658-017-1235-4

    Article  Google Scholar 

  40. Scott JC, Gordon TR, Shaw DV, Koike ST (2010) Effect of temperature on severity of Fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae. Plant Dis 94:13–17

    Article  CAS  Google Scholar 

  41. Ferre FS, Caselles JR, Siurana MPS (2007) Interacciones competitivas entre Fusarium sambucinum Fuckel y Phoma glomerata (Corda) Wollenweber & Hochapfel en condiciones in vitro. Rev Iberoam Micol 24:29–33. https://doi.org/10.1016/S1130-1406(07)70006-2

    Article  Google Scholar 

  42. Lahouar A, Marin S, Crespo-Sempere A et al (2016) Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds. Rev Argent Microbiol 48:78–85. https://doi.org/10.1016/j.ram.2015.10.001

    Article  PubMed  Google Scholar 

  43. Marín S, Magan N, Serra J et al (1999) Fumonisin B1 production and growth of Fusarium moniliforme and Fusarium proliferatum on maize, wheat, and barley grain. J Food Sci. https://doi.org/10.1111/j.1365-2621.1999.tb15941.x

    Article  Google Scholar 

  44. Samapundo S, Devliehgere F, De Meulenaer B, Debevere J (2005) Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. J Food Prot. https://doi.org/10.4315/0362-028X-68.5.1054

    Article  PubMed  Google Scholar 

  45. Marín P, Jurado M, Magan N et al (2010) Effect of solute stress and temperature on growth rate and TRI5 gene expression using real time RT-PCR in Fusarium graminearum from Spanish wheat. Int J Food Microbiol 140:169–174. https://doi.org/10.1016/j.ijfoodmicro.2010.03.041

    Article  CAS  PubMed  Google Scholar 

  46. Griffin DM (1981) Water potential as a selective factor in the microbial ecology of soils. Water Potential Relati Soil MiC’rohiol 9:141–151. https://doi.org/10.2136/sssaspecpub9.c5

    Article  Google Scholar 

  47. Lacey J, Magan N (1991) Fungi in cereal grains: their occurrence and water and temperature relationships. In: Chelowski J (ed) Cereal grain: mycotoxins, fungi and quality in drying and storage. Elsevier, Amsterdam, pp. 77–118

    Google Scholar 

  48. Larran S, Santamarina Siurana MP, Roselló Caselles J et al (2018) Fusarium sudanense, endophytic fungus causing typical symptoms of seedling blight and seed rot on wheat. J King Saud Univ Sci 32:468–474. https://doi.org/10.1016/j.jksus.2018.07.005

    Article  Google Scholar 

  49. Slayter R (1967) Plant-water relationships. Academic Press, London

    Google Scholar 

  50. Marais LJ (2015) Efficacy of water soluble silicon in managing Fusarium dry root rot of citrus. Acta Hortic 1065:993–1000. https://doi.org/10.17660/ActaHortic.2015.1065.124

    Article  Google Scholar 

Download references

Acknowledgements

The first author wishes to acknowledge the CNRST “Centre National pour la Recherche Scientifique et Technique” for a scholarship grant.

Funding

This study was supported by the Phytopathology Unit of the Department of Plant Pathology- Ecole Nationale d’Agriculture de Meknes.

Author information

Authors and Affiliations

Authors

Contributions

SE and RL designed research; SE and NR performed research; SE and RL analyzed data; and SE and RL wrote the manuscript; AT, SA and RL sources; AL and RL supervised the work.

Corresponding author

Correspondence to R. Lahlali.

Ethics declarations

Conflict of interest

The authors of this work declare that no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezrari, S., Radouane, N., Tahiri, A. et al. Environmental Effects of Temperature and Water Potential on Mycelial Growth of Neocosmospora solani and Fusarium spp. Causing Dry Root Rot of Citrus. Curr Microbiol 78, 3092–3103 (2021). https://doi.org/10.1007/s00284-021-02570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02570-1

Navigation