Skip to main content
Log in

MiR-99b-5p suppressed proliferation of human osteoblasts by targeting FGFR3 in osteoporosis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Osteoporosis is a common skeletal disease characterized by reduced bone mass partially caused by an imbalance between bone resorption and formation. Considering the potential role of microRNAs (miRNAs) in osteoporosis, we attempted to identify deregulated miRNA that participates in the pathogenesis of osteoporosis. We analyzed online datasets for differentially expressed miRNAs and predicted deregulated miRNA target genes, applied these genes for signaling pathway enrichment annotation, and selected the possible miR-99b-5p/FGFR3 axis. Within osteoporosis bone tissues, miR-99b-5p was upregulated and FGFR3 was downregulated. miR-99b-5p overexpression inhibited osteoblast proliferation and osteogenesis-related genes expression, whereas FGFR3 overexpression exerted opposite effects upon the proliferation of osteoblasts and osteogenesis-related genes expression. By direct targeting, miR-99b-5p inhibited FGFR3 expression. Moreover, FGFR3 silencing significantly reversed the roles of miR-99b-5p inhibition in the proliferation of osteoblasts and osteogenesis-related genes expression. In conclusion, we identify a deregulated miRNA/mRNA axis in osteoporosis and osteogenic differentiation, namely the miR-99b-5p/FGFR3 axis; through targeting FGFR3, miR-99b-5p inhibits osteoblast proliferation and activity, which might subsequently affect the bone formation in osteoporosis progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359:1841–50.

    Article  Google Scholar 

  2. Seeman E. Estrogen, androgen, and the pathogenesis of bone fragility in women and men. Curr Osteoporos Rep. 2004;2:90–6.

    Article  Google Scholar 

  3. Khosla S, Riggs BL. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am. 2005;34:1015–30, xi.

    Article  CAS  Google Scholar 

  4. Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2011;13:27–38.

    Article  Google Scholar 

  5. Bianco P, Sacchetti B, Riminucci M. Stem cells in skeletal physiology and endocrine diseases of bone. Endocr Dev. 2011;21:91–101.

    Article  CAS  Google Scholar 

  6. Karsenty G. Minireview: transcriptional control of osteoblast differentiation. Endocrinology. 2001;142:2731–3.

    Article  CAS  Google Scholar 

  7. Lian JB, Stein GS, Javed A, et al. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord. 2006;7:1–16.

    Article  CAS  Google Scholar 

  8. Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys. 2008;473:98–105.

    Article  CAS  Google Scholar 

  9. Marie PJ. Cellular and molecular alterations of osteoblasts in human disorders of bone formation. Histol Histopathol. 1999;14:525–38.

    CAS  PubMed  Google Scholar 

  10. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21:115–37.

    CAS  PubMed  Google Scholar 

  11. Marie PJ. Human osteoblastic cells: a potential tool to assess the etiology of pathologic bone formation. J Bone Miner Res. 1994;9:1847–50.

    Article  CAS  Google Scholar 

  12. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  Google Scholar 

  13. Kosik KS. MicroRNAs and cellular phenotypy. Cell. 2010;143:21–6.

    Article  CAS  Google Scholar 

  14. Burke M. Feds: provider capacity critical to Oregon’s success. Hospitals. 1991;65:68–9.

    CAS  PubMed  Google Scholar 

  15. De-Ugarte L, Yoskovitz G, Balcells S, et al. MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genom. 2015;8:75.

    Article  Google Scholar 

  16. Kong Y, Nie ZK, Li F, Guo HM, Yang XL, Ding SF. MiR-320a was highly expressed in postmenopausal osteoporosis and acts as a negative regulator in MC3T3E1 cells by reducing MAP9 and inhibiting PI3K/AKT signaling pathway. Exp Mol Pathol. 2019;110:104282.

    Article  CAS  Google Scholar 

  17. Li K, Chen S, Cai P, et al. MiRNA-483-5p is involved in the pathogenesis of osteoporosis by promoting osteoclast differentiation. Mol Cell Probes. 2020;49:101479.

    Article  CAS  Google Scholar 

  18. Cheng F, Yang MM, Yang RH. MiRNA-365a-3p promotes the progression of osteoporosis by inhibiting osteogenic differentiation via targeting RUNX2. Eur Rev Med Pharmacol Sci. 2019;23:7766–74.

    CAS  PubMed  Google Scholar 

  19. Han Y, Zhang K, Hong Y, et al. miR-342-3p promotes osteogenic differentiation via targeting ATF3. FEBS Lett. 2018;592:4051–65.

    Article  CAS  Google Scholar 

  20. Qin D, Zhang H, Zhang H, Sun T, Zhao H, Lee WH. Anti-osteoporosis effects of osteoking via reducing reactive oxygen species. J Ethnopharmacol. 2019;244:112045.

    Article  CAS  Google Scholar 

  21. Osawa Y, Matsushita M, Hasegawa S, et al. Activated FGFR3 promotes bone formation via accelerating endochondral ossification in mouse model of distraction osteogenesis. Bone. 2017;105:42–9.

    Article  CAS  Google Scholar 

  22. Kawane T, Qin X, Jiang Q, et al. Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Sci Rep. 2018;8:13551.

    Article  Google Scholar 

  23. Fromigue O, Modrowski D, Marie PJ. Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta. Curr Pharm Des. 2004;10:2593–603.

    Article  CAS  Google Scholar 

  24. Hoogwerf BJ. Renin-angiotensin system blockade and cardiovascular and renal protection. Am J Cardiol. 2010;105:30A-A35.

    Article  CAS  Google Scholar 

  25. Zhang FY, Yang FJ, Yang JL, Wang L, Zhang Y. Renin inhibition improves ovariectomy-induced osteoporosis of lumbar vertebra in mice. Biol Pharm Bull. 2014;37:1994–7.

    Article  CAS  Google Scholar 

  26. Queiroz-Junior CM, Santos A, Galvao I, et al. The angiotensin converting enzyme 2/angiotensin-(1–7)/Mas Receptor axis as a key player in alveolar bone remodeling. Bone. 2019;128:115041.

    Article  CAS  Google Scholar 

  27. Wang Z, Zhao Z, Yang Y, et al. MiR-99b-5p and miR-203a-3p function as tumor suppressors by targeting IGF-1R in gastric cancer. Sci Rep. 2018;8:10119.

    Article  Google Scholar 

  28. Li W, Chang J, Wang S, et al. miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget. 2015;6:24448–62.

    Article  Google Scholar 

  29. Liu R, Chen Y, Shou T, Hu J, Qing C. miRNA-99b-5p targets FZD8 to inhibit non-small cell lung cancer proliferation, migration and invasion. Onco Targets Ther. 2019;12:2615–21.

    Article  CAS  Google Scholar 

  30. Li YJ, Wang Y, Wang YY. MicroRNA-99b suppresses human cervical cancer cell activity by inhibiting the PI3K/AKT/mTOR signaling pathway. J Cell Physiol. 2019;234:9577–91.

    Article  CAS  Google Scholar 

  31. Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34:280–300.

    Article  CAS  Google Scholar 

  32. Dambroise E, Ktorza I, Brombin A, et al. Fgfr3 is a positive regulator of osteoblast expansion and differentiation during zebrafish skull vault development. J Bone Miner Res. 2020;35(9):1782–97.

    Article  CAS  Google Scholar 

  33. Haupt LM, Murali S, Mun FK, et al. The heparan sulfate proteoglycan (HSPG) glypican-3 mediates commitment of MC3T3-E1 cells toward osteogenesis. J Cell Physiol. 2009;220:780–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was supported by the fund of Technological Innovation Guidance Plan of Science and Technology Department of Hunan Province (2018SK52507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhou.

Ethics declarations

Conflict of interest

None.

Ethics approval

The investigation was performed with the approval of the Research Ethics Committee of the Second Xiangya Hospital (2020 (Yan110)).

Informed consent

The informed consents were obtained from all patient enrolled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Liu, B., Chen, X. et al. MiR-99b-5p suppressed proliferation of human osteoblasts by targeting FGFR3 in osteoporosis. Human Cell 34, 1398–1409 (2021). https://doi.org/10.1007/s13577-021-00567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00567-3

Keywords

Navigation