Skip to main content
Log in

Simple and Sensitive Multi-components Detection Using Synthetic Nitrogen-doped Carbon Dots Based on Soluble Starch

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Although carbon dots (CDs) as fluorescent sensors have been widely exploited, multi-component detection using CDs without tedious surface modification is always a challenging task. Here, two kinds of nitrogen-doped CDs (NCD-m and NCD-o) based on soluble starch (SS) as carbon source were prepared through one-pot hydrothermal process using m-phenylenediamine and o-phenylenediamine as nitrogenous dopant respectively. Through fluorescence “on–off” mechanism of CDs, NCD-m and NCD-o could be used as a fluorescence sensor for detection of Fe 3+ and Ag + with LOD of 0.25 and 0.51 μM, respectively. Additionally, NCD-m could be used for indirect detection of ascorbic acid (AA) with LOD of 5.02 μM. Moreover, fluorescence intensity of NCD-m also exhibited the sensitivity to pH change from 2 to 13. More importantly, Both NCD-m and NCD-o had potential application for analysis of complicated real samples such as tap water, Vitamin C tablets and orange juice. Ultimately, the small size of NCD-m could contribute to reinforcing intracellular endocytosis, which allowed them to be used for bacteria imaging. Obviously, these easily obtainable nitrogen-doped CDs were able to be used for multi-components detection.

Graphical abstract

Strategy for synthesis of nitrogen-doped carbon dots (NCDs) and a schematic for fabrication of as-prepared NCDs for detection of Fe 3+, Ag + and ascorbic acid (AA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary materials.

References

  1. Brugnara C (2003) Iron Deficiency and Erythropoiesis: New Diagnostic Approaches. Clin Chem 49:1573–1578. https://doi.org/10.1373/49.10.1573

    Article  CAS  PubMed  Google Scholar 

  2. Marchetti F, Palmucci J, Pettinari C, Pettinari R, Marangoni M, Ferraro S, Giovannetti R, Scuri S, Grappasonni I, Cocchioni M, Maldonado Hodar FJ, Gunnella R (2016) Preparation of Polyethylene Composites Containing Silver(I) Acylpyrazolonato Additives and SAR Investigation of their Antibacterial Activity. ACS Appl Mater Interfaces 43:29676–29687. https://doi.org/10.1021/acsami.6b09742

    Article  CAS  Google Scholar 

  3. Sahai RSN, Gaval VR, Bhat B (2019) Preparation of low-density polyethylene–silver ion antimicrobial film with and without ethylene-vinyl acetate. Polym Polym Compos 28:554–561. https://doi.org/10.1177/0967391119892473

    Article  CAS  Google Scholar 

  4. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. https://doi.org/10.1007/s11051-010-9900-y

    Article  CAS  Google Scholar 

  5. Hadrup N, Sharma AK, Loeschner K, Jacobsen NR (2020) Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: A review. Regul Toxicol Pharmacol 115:104690. https://doi.org/10.1016/j.yrtph.2020.104690

    Article  CAS  PubMed  Google Scholar 

  6. De Acha N, Elosua C, Corres JM, Arregui FJ (2019) Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media. Sensors 19:599. https://doi.org/10.3390/s19030599

    Article  CAS  PubMed Central  Google Scholar 

  7. Chowdhury S, Rooj B, Dutta A, Mandal U (2018) Review on Recent Advances in Metal Ions Sensing Using Different Fluorescent Probes. J Fluoresc 28:999–1021. https://doi.org/10.1007/s10895-018-2263-y

    Article  CAS  PubMed  Google Scholar 

  8. Park SH, Kwon N, Lee JH, Yoon J, Shin I (2020) Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev 49:143–179. https://doi.org/10.1039/C9CS00243J

    Article  CAS  PubMed  Google Scholar 

  9. Wu P, Zhao T, Wang S, Hou X (2014) Semicondutor quantum dots-based metal ion probes. Nanoscale 6:43–64. https://doi.org/10.1039/C3NR04628A

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Zhu JJ, Xu K (2014) Fluorescent metal nanoclusters: From synthesis to applications. TrAC, Trends Anal Chem 58:90–98. https://doi.org/10.1016/j.trac.2014.02.011

    Article  CAS  Google Scholar 

  11. Karmakar A, Samanta P, Dutta S, Ghosh SK (2019) Fluorescent “Turn-on” Sensing Based on Metal-Organic Frameworks (MOFs). Chemistry-an Asian Journal 14:4506–4519. https://doi.org/10.1002/asia.201901168

    Article  CAS  PubMed  Google Scholar 

  12. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/c4cs00269e

    Article  CAS  PubMed  Google Scholar 

  13. Li X, Zhao Z, Pan C (2016) Ionic liquid-assisted electrochemical exfoliation of carbon dots of different size for fluorescent imaging of bacteria by tuning the water fraction in electrolyte. Mikrochim Acta 183:2525–2532. https://doi.org/10.1007/s00604-016-1877-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Jiang M, Niu N, Chen Z, Li S (2018) Natural-Product-Derived Carbon Dots: From Natural Products to Functional Materials. Chemsuschem 11:11–24. https://doi.org/10.1002/cssc.201701847

    Article  CAS  PubMed  Google Scholar 

  15. Luo PG, Sahu S, Yang S-T, Sonkar SK, Wang J, Wang H, LeCroy GE, Cao L, Sun Y-P (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1:2116–2127. https://doi.org/10.1039/c3tb00018d

    Article  CAS  PubMed  Google Scholar 

  16. Zhu S, Zhao X, Song Y, Lu S, Yang B (2016) Beyond bottom-up carbon nanodots: Citric-acid derived organic molecules. Nano Today 11:128–132. https://doi.org/10.1016/j.nantod.2015.09.002

    Article  CAS  Google Scholar 

  17. Miao S, Liang K, Zhu J, Yang B, Zhao D, Kong B (2020) Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 33:100879. https://doi.org/10.1016/j.nantod.2020.100879

    Article  CAS  Google Scholar 

  18. Wang W, Wang B, Embrechts H, Damm C, Cadranel A, Strauss V, Distaso M, Hinterberger V, Guldi DM, Peukert W (2017) Shedding light on the effective fluorophore structure of high fluorescence quantum yield carbon nanodots. RSC Adv 7:24771–24780. https://doi.org/10.1039/C7RA04421F

    Article  CAS  Google Scholar 

  19. Wang N, Chai H, Dong X, Zhou Q, Zhu L (2018) Detection of Fe(III)EDTA by using photoluminescent carbon dot with the aid of F(-) ion. Food Chem 258:51–58. https://doi.org/10.1016/j.foodchem.2018.03.050

    Article  CAS  PubMed  Google Scholar 

  20. Rooj B, Dutta A, Islam S, Mandal U (2018) Green Synthesized Carbon Quantum Dots from Polianthes tuberose L. Petals for Copper (II) and Iron (II) Detection. J Fluoresc 28:1261–1267. https://doi.org/10.1007/s10895-018-2292-6

    Article  CAS  PubMed  Google Scholar 

  21. Omer KM, Tofiq DI, Hassan AQ (2018) Solvothermal synthesis of phosphorus and nitrogen doped carbon quantum dots as a fluorescent probe for iron(III). Mikrochim Acta 185:466. https://doi.org/10.1007/s00604-018-3002-4

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Xue H, Liu J, Wang Q, Wang L (2018) Carbon quantum dot-based fluorometric nitrite assay by exploiting the oxidation of iron(II) to iron(III). Mikrochim Acta 185:129. https://doi.org/10.1007/s00604-018-2668-y

    Article  CAS  PubMed  Google Scholar 

  23. Lv P, Yao Y, Zhou H, Zhang J, Pang Z, Ao K, Cai Y, Wei Q (2017) Synthesis of novel nitrogen-doped carbon dots for highly selective detection of iron ion. Nanotechnology 28:165502. https://doi.org/10.1088/1361-6528/aa6320

  24. Wang C, Huang Y, Jiang K, Humphrey MG, Zhang C (2016) Dual-emitting quantum dot/carbon nanodot-based nanoprobe for selective and sensitive detection of Fe(3+) in cells. Analyst 141:4488–4494. https://doi.org/10.1039/c6an00605a

    Article  CAS  PubMed  Google Scholar 

  25. Hamishehkar H, Ghasemzadeh B, Naseri A, Salehi R, Rasoulzadeh F (2015) Carbon dots preparation as a fluorescent sensing platform for highly efficient detection of Fe(III) ions in biological systems. Spectrochim Acta Part A Mol Biomol Spectrosc 150:934–939. https://doi.org/10.1016/j.saa.2015.06.061

    Article  CAS  Google Scholar 

  26. Zhang J, Yang H, Pan S, Liu H, Hu X (2021) A novel “off-on-off” fluorescent-nanoprobe based on B, N co-doped carbon dots and MnO2 nanosheets for sensitive detection of GSH and Ag+. Spectrochim Acta Part A Mol Biomol Spectrosc 244:118831. https://doi.org/10.1016/j.saa.2020.118831

    Article  CAS  Google Scholar 

  27. Dang DK, Sundaram C, Ngo Y-LT, Chung JS, Kim EJ, Hur SH (2018) One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution. Sens Actuators, B Chem 255:3284–3291. https://doi.org/10.1016/j.snb.2017.09.155

    Article  CAS  Google Scholar 

  28. Huang S, Yang E, Yao J, Liu Y, Xiao Q (2018) Red emission nitrogen, boron, sulfur co-doped carbon dots for “on-off-on” fluorescent mode detection of Ag+ ions and l-cysteine in complex biological fluids and living cells. Anal Chim Acta 1035:192–202. https://doi.org/10.1016/j.aca.2018.06.051

    Article  CAS  PubMed  Google Scholar 

  29. Ren G, Zhang Q, Li S, Fu S, Chai F, Wang C, Qu F (2017) One pot synthesis of highly fluorescent N doped C-dots and used as fluorescent probe detection for Hg2+ and Ag+ in aqueous solution. Sens Actuators, B Chem 243:244–253. https://doi.org/10.1016/j.snb.2016.11.149

    Article  CAS  Google Scholar 

  30. Ma X, Lin S, Dang Y, Dai Y, Zhang X, Xia F (2019) Carbon dots as an “on-off-on” fluorescent probe for detection of Cu(II) ion, ascorbic acid, and acid phosphatase. Anal Bioanal Chem 411:6645–6653. https://doi.org/10.1007/s00216-019-02038-z

    Article  CAS  PubMed  Google Scholar 

  31. Gong X, Liu Y, Yang Z, Shuang S, Zhang Z, Dong C (2017) An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal Chim Acta 968:85–96. https://doi.org/10.1016/j.aca.2017.02.038

    Article  CAS  PubMed  Google Scholar 

  32. Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90:1–37. https://doi.org/10.1007/s00204-015-1579-5

    Article  CAS  PubMed  Google Scholar 

  33. Cathcart RF (1985) Vitamin C: The nontoxic, nonrate-limited, antioxidant free radical scavenger. Med Hypotheses 18:61–77. https://doi.org/10.1016/0306-9877(85)90121-5

    Article  CAS  PubMed  Google Scholar 

  34. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Bradley MD, Wagner BA, Buettner GR, Monga V, Milhem M, Spitz DR, Allen BG (2018) Redox active metals and H2O2 mediate the increased efficacy of pharmacological ascorbate in combination with gemcitabine or radiation in pre-clinical sarcoma models. Redox Biol 14:417–422. https://doi.org/10.1016/j.redox.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  35. Carr AC, Maggini S (2017) Vitamin C and Immune Function. Nutrients 9:1211. https://doi.org/10.3390/nu9111211

    Article  CAS  PubMed Central  Google Scholar 

  36. Minor EA, Court BL, Young JI, Wang G (2013) Ascorbate Induces Ten-Eleven Translocation (Tet) Methylcytosine Dioxygenase-mediated Generation of 5-Hydroxymethylcytosine*♦. J Biol Chem 288:13669–13674. https://doi.org/10.1074/jbc.C113.464800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moser MA, Chun OK (2016) Vitamin C and Heart Health: A Review Based on Findings from Epidemiologic Studies. Int J Mol Sci 17:1328. https://doi.org/10.3390/ijms17081328

    Article  CAS  PubMed Central  Google Scholar 

  38. Vallès-Pàmies B, Barclay F, Hill SE, Mitchell JR, Paterson LA, Blanshard JMV (1997) The effects of low molecular weight additives on the viscosities of cassava starch. Carbohyd Polym 34:31–38. https://doi.org/10.1016/S0144-8617(97)00094-5

    Article  Google Scholar 

  39. Buettner GR, Jurkiewicz BA (1996) Catalytic Metals, Ascorbate and Free Radicals: Combinations to Avoid. Radiat Res 145:532–541. https://doi.org/10.2307/3579271

    Article  CAS  PubMed  Google Scholar 

  40. Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Anal Chem 84:5351–5357. https://doi.org/10.1021/ac3007939

    Article  CAS  PubMed  Google Scholar 

  41. Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP (2009) One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 3:2367–2375. https://doi.org/10.1021/nn900546b

    Article  CAS  PubMed  Google Scholar 

  42. Martindale BCM, Hutton GAM, Caputo CA, Reisner E (2015) Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. J Am Chem Soc 137:6018–6025. https://doi.org/10.1021/jacs.5b01650

    Article  CAS  PubMed  Google Scholar 

  43. Vikneswaran R, Ramesh S, Yahya R (2014) Green synthesized carbon nanodots as a fluorescent probe for selective and sensitive detection of iron(III) ions. Mater Lett 136:179–182. https://doi.org/10.1016/j.matlet.2014.08.063

    Article  CAS  Google Scholar 

  44. Liu Y, Li W, Wu P, Ma C, Wu X, Xu M, Luo S, Xu Z, Liu S (2019) Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging. Sens Actuators, B Chem 281:34–43. https://doi.org/10.1016/j.snb.2018.10.075

    Article  CAS  Google Scholar 

  45. Wang J, Peng F, Lu Y, Zhong Y, Wang S, Xu M, Ji X, Su Y, Liao L, He Y (2015) Large-Scale Green Synthesis of Fluorescent Carbon Nanodots and Their Use in Optics Applications. Advanced Optical Materials 3:103–111. https://doi.org/10.1002/adom.201400307

    Article  CAS  Google Scholar 

  46. Ding H, Yu S-B, Wei J-S, Xiong H-M (2016) Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 10:484–491. https://doi.org/10.1021/acsnano.5b05406

    Article  CAS  PubMed  Google Scholar 

  47. Lu S, Xiao G, Sui L, Feng T, Yong X, Zhu S, Li B, Liu Z, Zou B, Jin M, Tse JS, Yan H, Yang B (2017) Piezochromic Carbon Dots with Two-photon Fluorescence. Angewandte Chemie-International Edition 56:6187–6191. https://doi.org/10.1002/anie.201700757

    Article  CAS  PubMed  Google Scholar 

  48. Hu M, Yang Y, Gu X, Hu Y, Huang J, Wang C (2014) One-pot synthesis of photoluminescent carbon nanodots by carbonization of cyclodextrin and their application in Ag+ detection. RSC Adv 4:62446–62452. https://doi.org/10.1039/C4RA11491D

    Article  CAS  Google Scholar 

  49. Yuan YH, Liu ZX, Li RS, Zou HY, Lin M, Liu H, Huang CZ (2016) Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale 8:6770–6776. https://doi.org/10.1039/C6NR00402D

    Article  CAS  PubMed  Google Scholar 

  50. Liu W, Li C, Sun X, Pan W, Yu G, Wang J (2017) Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology 28:485705. https://doi.org/10.1088/1361-6528/aa900b

    Article  CAS  PubMed  Google Scholar 

  51. Deng Z, Liu C, Jin Y, Pu J, Wang B, Chen J (2019) High quantum yield blue- and orange-emitting carbon dots: one-step microwave synthesis and applications as fluorescent films and in fingerprint and cellular imaging. Analyst 144:4569–4574. https://doi.org/10.1039/C9AN00672A

    Article  CAS  PubMed  Google Scholar 

  52. Li C, Liu W, Ren Y, Sun X, Pan W, Wang J (2017) The selectivity of the carboxylate groups terminated carbon dots switched by buffer solutions for the detection of multi-metal ions. Sens Actuators, B Chem 240:941–948. https://doi.org/10.1016/j.snb.2016.09.068

    Article  CAS  Google Scholar 

  53. Guo Y, Wang Z, Shao H, Jiang X (2013) Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 52:583–589. https://doi.org/10.1016/j.carbon.2012.10.028

    Article  CAS  Google Scholar 

  54. Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens Bioelectron 58:219–225. https://doi.org/10.1016/j.bios.2014.02.061

    Article  CAS  PubMed  Google Scholar 

  55. Meng A, Xu Q, Zhao K, Li Z, Liang J, Li Q (2018) A highly selective and sensitive “on-off-on” fluorescent probe for detecting Hg(II) based on Au/N-doped carbon quantum dots. Sensors and Actuators B-Chemical 255:657–665. https://doi.org/10.1016/j.snb.2017.08.028

    Article  CAS  Google Scholar 

  56. Wang M, Wan Y, Zhang K, Fu Q, Wang L, Zeng J, Xia Z, Gao D (2019) Green synthesis of carbon dots using the flowers of Osmanthus fragrans (Thunb.) Lour. as precursors: application in Fe(3+) and ascorbic acid determination and cell imaging. Anal Bioanal Chem 411:2715–2727. https://doi.org/10.1007/s00216-019-01712-6

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Tang K, Yu J, Wang H, Tu M, Wang X (2019) Nitrogen and chlorine co-doped carbon dots as probe for sensing and imaging in biological samples. Royal Society Open Science 6:181557. https://doi.org/10.1098/rsos.181557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen K, Qing W, Hu W, Lu M, Wang Y, Liu X (2019) On-off-on fluorescent carbon dots from waste tea: Their properties, antioxidant and selective detection of CrO4(2-), Fe(3+), ascorbic acid and L-cysteine in real samples. Spectrochim Acta Part A Mol Biomol Spectrosc 213:228–234. https://doi.org/10.1016/j.saa.2019.01.066

    Article  CAS  Google Scholar 

  59. Shamsipur M, Molaei K, Molaabasi F, Alipour M, Alizadeh N, Hosseinkhani S, Hosseini M (2018) Facile preparation and characterization of new green emitting carbon dots for sensitive and selective off/on detection of Fe(3+) ion and ascorbic acid in water and urine samples and intracellular imaging in living cells. Talanta 183:122–130. https://doi.org/10.1016/j.talanta.2018.02.042

    Article  CAS  PubMed  Google Scholar 

  60. Ma X, Lin S, Dang Y, Dai Y, Zhang X, Xia F (2019) Carbon dots as an “on-off-on” fluorescent probe for detection of Cu(II) ion, ascorbic acid, and acid phosphatase. Anal Bioanal Chem 411:6645–6653. https://doi.org/10.1007/s00216-019-02038-z

    Article  CAS  PubMed  Google Scholar 

  61. Huang Y, Zhou J, Feng H, Zheng J, Ma HM, Liu W, Tang C, Ao H, Zhao M, Qian Z (2016) A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Biosens Bioelectron 86:748–755. https://doi.org/10.1016/j.bios.2016.07.081

    Article  CAS  PubMed  Google Scholar 

  62. Guo Y, Yang L, Li W, Wang X, Shang Y, Li B (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta 183:1409–1416. https://doi.org/10.1007/s00604-016-1779-6

    Article  CAS  Google Scholar 

  63. Liao S, Huang X, Yang H, Chen X (2018) Nitrogen-doped carbon quantum dots as a fluorescent probe to detect copper ions, glutathione, and intracellular pH. Anal Bioanal Chem 410:7701–7710. https://doi.org/10.1007/s00216-018-1387-x

    Article  CAS  PubMed  Google Scholar 

  64. Chen BB, Liu ML, Huang CZ (2021) Recent advances of carbon dots in imaging-guided theranostics. TrAC, Trends Anal Chem 134:116116. https://doi.org/10.1016/j.trac.2020.116116

    Article  CAS  Google Scholar 

  65. Qiao G, Chen G, Wen Q, Liu W, Gao J, Yu Z, Wang Q (2020) Rapid conversion from common precursors to carbon dots in large scale: Spectral controls, optical sensing, cellular imaging and LEDs application. J Colloid Interface Sci 580:88–98. https://doi.org/10.1016/j.jcis.2020.07.034

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No.81902168).

Author information

Authors and Affiliations

Authors

Contributions

Yuanyuan Hu conceived and designed the study. Jun Luo conducted the literature search. Yuanyuan Hu and Wenxuan Ji performed the related experiments. Yuanyuan Hu, Wenxuan Ji, Jinjuan Qiao, Heng Li, Yun Zhang, and Jun Luo were involved in the analysis and interpretation of data. Yuanyuan Hu and Jun Luo drafted the manuscript. The study was supervised by Jinjuan Qiao, Heng Li and Yun Zhang. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuanyuan Hu or Jun Luo.

Ethics declarations

Consent to Participate

This research did not involve clinical trials and animal experiments which were related to humans and animals as the experimental subjects. Currently, our institutions only require employees to get approval from the ethics committee before carrying out the above two kinds of experiments.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3146 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Ji, W., Qiao, J. et al. Simple and Sensitive Multi-components Detection Using Synthetic Nitrogen-doped Carbon Dots Based on Soluble Starch. J Fluoresc 31, 1379–1392 (2021). https://doi.org/10.1007/s10895-021-02764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02764-7

Keywords

Navigation