Skip to main content

Advertisement

Log in

The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There has been an increase in the incidence of chronic neurodegenerative disorders of the central nervous system, including Alzheimer’s and Parkinson’s diseases, over the recent years mostly due to the rise in the number of elderly individuals. In addition, various neurodegenerative disorders are related to imbalances in the CXCL12/CXCR4/ACKR3 response axis. Notably, the CXC Chemokine Ligand 12 (CXCL12) is essential for the development of the central nervous system. Moreover, the expression and distribution of CXCL12 and its receptors are associated with the aggravation or alleviation of symptoms of neurodegenerative disorders. Therefore, the current review sought to highlight the specific functions of CXCL12 and its receptors in various neurodegenerative disorders, in order to provide new insights for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

PSP:

Progressive supranuclear palsy

PD:

Parkinson disease

FTD:

Frontotemporal dementia

AD:

Alzheimer’s disease

MS:

Multiple sclerosis

SDF-1:

Stromal cell-derived factor 1

CXCL12:

CXC chemokine ligand 12

CXCR4:

CXC chemokine receptor 4

ACKR3:

Atypical chemokine receptor 3

CXCR7:

CXC chemokine receptor 7

GAG:

Glycosaminoglycan

References

  • Abe P, Wüst HM, Arnold SJ, van de Pavert SA, Stumm R (2018) CXCL12-mediated feedback from granule neurons regulates generation and positioning of new neurons in the dentate gyrus. Glia 66(8):1566–1576

    Article  PubMed  Google Scholar 

  • Aguzzi A, Zhu C (2017) Microglia in prion diseases. J Clin Invest 127(9):3230–3239

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrés-Benito P, Povedano M, Domínguez R, Marco C, Colomina MJ, López-Pérez Ó, Santana I, Baldeiras I, Martínez-Yelámos S, Zerr I, Llorens F, Fernández-Irigoyen J, Santamaría E, Ferrer I (2020) Increased C-X-C motif chemokine ligand 12 levels in cerebrospinal fluid as a candidate biomarker in sporadic amyotrophic lateral sclerosis. Int J Mol Sci 21(22):8680

    Article  PubMed Central  Google Scholar 

  • Bagheri V, Khorramdelazad H, Hassanshahi G, Moghadam-Ahmadi A, Vakilian A (2018) CXCL12 and CXCR4 in the peripheral blood of patients with Parkinson’s disease. NeuroImmunoModulation 25(4):201–205

    Article  CAS  PubMed  Google Scholar 

  • Baufeld C, O’Loughlin E, Calcagno N, Madore C, Butovsky O (2018) Differential contribution of microglia and monocytes in neurodegenerative diseases. J Neural Transm 125(5):809–826

    Article  CAS  PubMed  Google Scholar 

  • Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, Wilson D, Xu Q, Raz E (2008) Control of chemokine-guided cell migration by ligand sequestration. Cell 132(3):463–473

    Article  CAS  PubMed  Google Scholar 

  • Bonham LW, Karch CM, Fan CC, Tan C, Geier EG, Wang Y, Wen N, Broce IJ, Li Y, Barkovich MJ, Ferrari R, Hardy J, Momeni P, Höglinger G, Müller U, Hess CP, Sugrue LP, Dillon WP, Schellenberg GD, Miller BL, Andreassen OA, Dale AM, Barkovich AJ, Yokoyama JS, Desikan RS (2018) CXCR4 involvement in neurodegenerative diseases. Transl Psychiatry 8(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderon TM, Eugenin EA, Lopez L, Kumar SS, Hesselgesser J, Raine CS, Berman JW (2006) A role for CXCL12 (SDF-1alpha) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. J Neuroimmunol 177(1–2):27–39

    Article  CAS  PubMed  Google Scholar 

  • Capsoni S, Malerba F, Carucci NM, Rizzi C, Criscuolo C, Origlia N, Calvello M, Viegi A, Meli G, Cattaneo A (2017) The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor. Brain 140(1):201–217

    Article  PubMed  Google Scholar 

  • Chen D, Zhang T, Lee TH (2020) cellular mechanisms of melatonin: insight from neurodegenerative diseases. Biomolecules 10(8):1158

    Article  PubMed Central  Google Scholar 

  • Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P, Wright M, McCandless EE, Patel JR, Luker GD, Littman DR, Russell JH, Klein RS (2011) CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med 208(2):327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Luz Sierra M, Yang F, Narazaki M, Salvucci O, Davis D, Yarchoan R, Zhang HH, Fales H, Tosato G (2004) Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 103(7):2452–2459

    Article  Google Scholar 

  • Deleidi M, Gasser T (2013) The role of inflammation in sporadic and familial Parkinson’s disease. Cell Mol Life Sci 70(22):4259–4273

    Article  CAS  PubMed  Google Scholar 

  • Di Benedetto S, Gaetjen M, Muller L (2019) The modulatory effect of gender and cytomegalovirus-seropositivity on circulating inflammatory factors and cognitive performance in elderly individuals. Int J Mol Sci 20(4):990

    Article  PubMed Central  Google Scholar 

  • Drechsel DA, Estévez AG, Barbeito L, Beckman JS (2012) Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS. Neurotox Res 22(4):251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felton LM, Cunningham C, Rankine EL, Waters S, Boche D, Perry VH (2005) MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol Dis 20(2):283–295

    Article  CAS  PubMed  Google Scholar 

  • Friand V, Haddad O, Papy-Garcia D, Hlawaty H, Vassy R, Hamma-Kourbali Y, Perret GY, Courty J, Baleux F, Oudar O, Gattegno L, Sutton A, Charnaux N (2009) Glycosaminoglycan mimetics inhibit SDF-1/CXCL12-mediated migration and invasion of human hepatoma cells. Glycobiology 19(12):1511–1524

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Cookson MR, Petrucelli L, La Spada AR (2018) Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci 21(10):1300–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Dong Q, Yao H, Zhang Y, Yang Y, Dang Y, Zhang H, Yang Z, Xu M, Xu R (2017) Induced neural stem cells modulate microglia activation states via CXCL12/CXCR4 signaling. Brain Behav Immun 59:288–299

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist A (2020) Chemokines and bone. Handb Exp Pharmacol 262:231–258

    Article  CAS  PubMed  Google Scholar 

  • Gouwy M, Struyf S, Leutenez L, Pörtner N, Sozzani S, Van Damme J (2014) Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells. Immunobiology 219(3):218–229

    Article  CAS  PubMed  Google Scholar 

  • Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, Chintawar S, Schnell C, Antel JP, Allen ND, Cader MZ, Wade-Martins R, James WS, Cowley SA (2017) A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports 8(6):1727–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans–as exemplified by chemokines. Annu Rev Biochem 74:385–410

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40(2):140–155

    Article  PubMed  Google Scholar 

  • Hasselmann J, Coburn MA, England W, Figueroa Velez DX, Kiani Shabestari S, Tu CH, McQuade A, Kolahdouzan M, Echeverria K, Claes C, Nakayama T, Azevedo R, Coufal NG, Han CZ, Cummings BJ, Davtyan H, Glass CK, Healy LM, Gandhi SP, Spitale RC, Blurton-Jones M (2019) Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 103(6):1016-1033.e1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hortobágyi T, Cairns NJ (2017) Amyotrophic lateral sclerosis and non-tau frontotemporal lobar degeneration. Handb Clin Neurol 145:369–381

    Article  PubMed  Google Scholar 

  • Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, Sealock J, Karlsson IK, Hägg S, Athanasiu L, Voyle N, Proitsi P, Witoelar A, Stringer S, Aarsland D, Almdahl IS, Andersen F, Bergh S, Bettella F, Bjornsson S, Brækhus A, Bråthen G, de Leeuw C, Desikan RS, Djurovic S, Dumitrescu L, Fladby T, Hohman TJ, Jonsson PV, Kiddle SJ, Rongve A, Saltvedt I, Sando SB, Selbæk G, Shoai M, Skene NG, Snaedal J, Stordal E, Ulstein ID, Wang Y, White LR, Hardy J, Hjerling-Leffler J, Sullivan PF, van der Flier WM, Dobson R, Davis LK, Stefansson H, Stefansson K, Pedersen NL, Ripke S, Andreassen OA, Posthuma D (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51(3):404–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssens R, Mortier A, Boff D, Ruytinx P, Gouwy M, Vantilt B, Larsen O, Daugvilaite V, Rosenkilde MM, Parmentier M, Noppen S, Liekens S, Van Damme J, Struyf S, Teixeira MM, Amaral FA, Proost P (2017) Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes. Biochem Pharmacol 132:92–101

    Article  CAS  PubMed  Google Scholar 

  • Janssens R, Struyf S, Proost P (2018) Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 44:51–68

    Article  CAS  PubMed  Google Scholar 

  • Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 1(1):1003

    PubMed  PubMed Central  Google Scholar 

  • Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7):1276-1290.e1217

    Article  CAS  PubMed  Google Scholar 

  • Khorramdelazad H, Bagheri V, Hassanshahi G, Zeinali M, Vakilian A (2016) New insights into the role of stromal cell-derived factor 1 (SDF-1/CXCL12) in the pathophysiology of multiple sclerosis. J Neuroimmunol 290:70–75

    Article  CAS  PubMed  Google Scholar 

  • Kledal TN, Rosenkilde MM, Coulin F, Simmons G, Johnsen AH, Alouani S, Power CA, Lüttichau HR, Gerstoft J, Clapham PR, Clark-Lewis I, Wells TN, Schwartz TW (1997) A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus. Science 277(5332):1656–1659

    Article  CAS  PubMed  Google Scholar 

  • Köhling S, Blaszkiewicz J, Ruiz-Gómez G, Fernández-Bachiller MI, Lemmnitzer K, Panitz N, Beck-Sickinger AG, Schiller J, Pisabarro MT, Rademann J (2019) Syntheses of defined sulfated oligohyaluronans reveal structural effects, diversity and thermodynamics of GAG-protein binding. Chem Sci 10(3):866–878

    Article  PubMed  Google Scholar 

  • Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, Roysam B, Shen Q, Temple S (2010) Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 7(2):163–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O’Loughlin E, Xu Y, Fanek Z, Greco DJ, Smith ST, Tweet G, Humulock Z, Zrzavy T, Conde-Sanroman P, Gacias M, Weng Z, Chen H, Tjon E, Mazaheri F, Hartmann K, Madi A, Ulrich JD, Glatzel M, Worthmann A, Heeren J, Budnik B, Lemere C, Ikezu T, Heppner FL, Litvak V, Holtzman DM, Lassmann H, Weiner HL, Ochando J, Haass C, Butovsky O (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47(3):566-581.e569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laske C, Stellos K, Eschweiler GW, Leyhe T, Gawaz M (2008) Decreased CXCL12 (SDF-1) plasma levels in early Alzheimer’s disease: a contribution to a deficient hematopoietic brain support? J Alzheimers Dis 15(1):83–95

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ransohoff RM (2008) Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol 84(2):116–131

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Niu M, Zhao A, Kang W, Chen Z, Luo N, Zhou L, Zhu X, Lu L, Liu J (2019) CXCL12 is involved in α-synuclein-triggered neuroinflammation of Parkinson’s disease. J Neuroinflammation 16(1):263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JQ, Chu SF, Zhou X, Zhang DY, Chen NH (2019) Role of chemokines in Parkinson’s disease. Brain Res Bull 152:11–18

    Article  CAS  PubMed  Google Scholar 

  • Luke F, Blazquez R, Yamaci RF, Lu X, Pregler B, Hannus S, Menhart K, Hellwig D, Wester HJ, Kropf S, Heudobler D, Grosse J, Moosbauer J, Hutterer M, Hau P, Riemenschneider MJ, Bayerlova M, Bleckmann A, Polzer B, Beissbarth T, Klein CA, Pukrop T (2018) Isolated metastasis of an EGFR-L858R-mutated NSCLC of the meninges: the potential impact of CXCL12/CXCR4 axis in EGFRmut NSCLC in diagnosis, follow-up and treatment. Oncotarget 9(27):18844–18857

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Xue H, Pardo AC, Mattson MP, Rao MS, Maragakis NJ (2007) Impaired SDF1/CXCR4 signaling in glial progenitors derived from SOD1(G93A) mice. J Neurosci Res 85(11):2422–2432

    Article  CAS  PubMed  Google Scholar 

  • Magliozzi R, Howell OW, Nicholas R, Cruciani C, Castellaro M, Romualdi C, Rossi S, Pitteri M, Benedetti MD, Gajofatto A, Pizzini FB, Montemezzi S, Rasia S, Capra R, Bertoldo A, Facchiano F, Monaco S, Reynolds R, Calabrese M (2018) Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann Neurol 83(4):739–755

    Article  CAS  PubMed  Google Scholar 

  • Magliozzi R, Marastoni D, Rossi S, Castellaro M, Mazziotti V, Pitteri M, Gajofatto A, Monaco S, Benedetti MD, Calabrese M (2019) Increase of CSF inflammatory profile in a case of highly active multiple sclerosis. BMC Neurol 19(1):231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao W, Yi X, Qin J, Tian M, Jin G (2020) CXCL12 promotes proliferation of radial glia like cells after traumatic brain injury in rats. Cytokine 125:154771

    Article  CAS  PubMed  Google Scholar 

  • McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, Klein RS (2008) Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol 172(3):799–808

    Article  PubMed  PubMed Central  Google Scholar 

  • McQuade A, Blurton-Jones M (2019) Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol 431(9):1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuade A, Kang YJ, Hasselmann J, Jairaman A, Sotelo A, Coburn M, Shabestari SK, Chadarevian JP, Fote G, Tu CH, Danhash E, Silva J, Martinez E, Cotman C, Prieto GA, Thompson LM, Steffan JS, Smith I, Davtyan H, Cahalan M, Cho H, Blurton-Jones M (2020) Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer’s disease. Nat Commun 11(1):5370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niraula A, Sheridan JF, Godbout JP (2017) Microglia priming with aging and stress. Neuropsychopharmacology 42(1):318–333

    Article  PubMed  Google Scholar 

  • Panganiban AT, Blair RV, Hattler JB, Bohannon DG, Bonaldo MC, Schouest B, Maness NJ, Kim WK (2020) A Zika virus primary isolate induces neuroinflammation, compromises the blood-brain barrier and upregulates CXCL12 in adult macaques. Brain Pathol 30(6):1017–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petković F, Blaževski J, Momčilović M, Mostarica Stojkovic M, Miljković D (2013) Nitric oxide inhibits CXCL12 expression in neuroinflammation. Immunol Cell Biol 91(6):427–434

    Article  PubMed  Google Scholar 

  • Rabinovich-Nikitin I, Ezra A, Barbiro B, Rabinovich-Toidman P, Solomon B (2016) Chronic administration of AMD3100 increases survival and alleviates pathology in SOD1(G93A) mice model of ALS. J Neuroinflammation 13(1):123

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP, Gerard C, Lefkowitz RJ (2010) Beta-arrestin- but not G protein-mediated signaling by the decoy receptor CXCR7. Proc Natl Acad Sci U S A 107(2):628–632

    Article  PubMed  Google Scholar 

  • Richmond A (2002) Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2(9):664–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

    Article  CAS  PubMed  Google Scholar 

  • Rueda P, Richart A, Récalde A, Gasse P, Vilar J, Guérin C, Lortat-Jacob H, Vieira P, Baleux F, Chretien F, Arenzana-Seisdedos F, Silvestre JS (2012) Homeostatic and tissue reparation defaults in mice carrying selective genetic invalidation of CXCL12/proteoglycan interactions. Circulation 126(15):1882–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS (2013) Chemokines in tumor progression and metastasis. Oncotarget 4(12):2171–2185

    Article  PubMed  PubMed Central  Google Scholar 

  • Sierro F, Biben C, Martínez-Muñoz L, Mellado M, Ransohoff RM, Li M, Woehl B, Leung H, Groom J, Batten M, Harvey RP, Martínez AC, Mackay CR, Mackay F (2007) Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A 104(37):14759–14764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiller S, Panitz N, Limasale YDP, Atallah PM, Schirmer L, Bellmann-Sickert K, Blaszkiewicz J, Koehling S, Freudenberg U, Rademann J, Werner C, Beck-Sickinger AG (2019) Modulation of human CXCL12 binding properties to glycosaminoglycans to enhance chemotactic gradients. ACS Biomater Sci Eng 5(10):5128–5138

    Article  CAS  PubMed  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518

    Article  CAS  PubMed  Google Scholar 

  • Triviño JJ, von Bernhardi R (2021) The effect of aged microglia on synaptic impairment and its relevance in neurodegenerative diseases. Neurochem Int 144:104982

    Article  PubMed  Google Scholar 

  • Trousse F, Jemli A, Silhol M, Garrido E, Crouzier L, Naert G, Maurice T, Rossel M (2019) Knockdown of the CXCL12/CXCR7 chemokine pathway results in learning deficits and neural progenitor maturation impairment in mice. Brain Behav Immun 80:697–710

    Article  CAS  PubMed  Google Scholar 

  • Wang HA, Lee JD, Lee KM, Woodruff TM, Noakes PG (2017) Complement C5a–C5aR1 signalling drives skeletal muscle macrophage recruitment in the hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. Skelet Muscle 7(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Xu Y, Chen JC, Qin YY, Liu M, Liu Y, Xie MJ, Yu ZY, Zhu Z, Wang W (2012) Stromal cell-derived factor 1α decreases β-amyloid deposition in Alzheimer’s disease mouse model. Brain Res 1459:15–26

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Song X, Wang Y, Huang L, Luo W, Li F, Qin S, Wang Y, Xiao J, Wu Y, Jin F, Kitazato K, Wang Y (2020) Dysregulation of cofilin-1 activity-the missing link between herpes simplex virus type-1 infection and Alzheimer’s disease. Crit Rev Microbiol 46(4):381–396

    Article  CAS  PubMed  Google Scholar 

  • Williams JL, Holman DW, Klein RS (2014a) Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci 8:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams JL, Patel JR, Daniels BP, Klein RS (2014b) Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system. J Exp Med 211(5):791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan F, Chang S, Luo L, Li Y, Wang L, Song Y, Qu M, Zhang Z, Yang GY, Wang Y (2018) cxcl12 gene engineered endothelial progenitor cells further improve the functions of oligodendrocyte precursor cells. Exp Cell Res 367(2):222–231

    Article  CAS  PubMed  Google Scholar 

  • Zella MAS, Metzdorf J, Ostendorf F, Maass F, Muhlack S, Gold R, Haghikia A, Tönges L (2019) Novel immunotherapeutic approaches to target alpha-synuclein and related neuroinflammation in Parkinson’s disease. Cells 8(2):105

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Zhang H, Lin S, Chen X, Yao Y, Mao X, Shao B, Zhuge Q, Jin K (2018) SDF-1/CXCR7 chemokine signaling is induced in the peri-infarct regions in patients with ischemic stroke. Aging Dis 9(2):287–295

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of Liaoning Province, China (2019-ZD-0772) and the National Natural Science Foundation of China (Grant Nos. 81471809; 81971639).

Author information

Authors and Affiliations

Authors

Contributions

YY conceived the study and wrote the manuscript; JS contributed to manuscript preparation and data analysis and interpretation; ZZ revised the work critically for important intellectual content and approved the version to be published.

Corresponding author

Correspondence to Zhen Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Su, J. & Zhang, Z. The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker. Cell Mol Neurobiol 42, 2147–2156 (2022). https://doi.org/10.1007/s10571-021-01115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-021-01115-1

Keywords

Navigation