Skip to main content

Advertisement

Log in

Neuroprotective Effects of Sodium Butyrate through Suppressing Neuroinflammation and Modulating Antioxidant Enzymes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The discovery of effective therapeutic agents against neurodegenerative diseases (NDDs) remains challenging. Neurotoxicity, inflammations, and oxidative stress are associating factors of NDDs. Sodium butyrate (NaB) is a short-chain fatty acid found in diet and produced in the gut that reportedly protects cancer, inflammation, obesity and so on. Previously, SH-SY5Y cells were studied as in vitro models of cerebral diseases. We have investigated the neuroprotective effects of NaB in SH-SY5Y cells stimulated with TNF-α. The expression of inflammatory mediators, including iNOS, COX-2, and mitogen-activated protein kinases (MAPK) and the apoptotic regulators, including P-53, Bcl-2 associated X (BAX) Protein, and caspase-3 were analyzed by western blot analysis. The anti-apoptotic gene Bcl-2 and the pro-apoptotic gene BAX translocation were also investigated. Our results showed that NaB attenuated cell death and inhibited the NO production and decreased the expression of iNOS and COX-2 in TNF-α-stimulated SH-SY5Y cells. NaB notably ameliorated apoptotic regulatory proteins p-53, Caspase-3 and caspase-1 level, and reversed phosphorylation of extracellular signal-regulated kinases and p-38 proteins. NaB ameliorated Glucocorticoid receptor and NLRP3 inflammasome expressions. NaB also suppressed the BAX nuclear translocation and modulated Nrf-2, HO-1 and MnSOD expression in neuroblastoma cells. In addition, NaB substantially reversed the reactive oxygen species in H2O2 induced SH-SY5Y cells. Altogether, our results suggest that sodium butyrate has potential therapeutic effects against NDDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data available within the article or its supplementary materials.

References

  1. Fu H, Hardy J, Duff KE (2018) Selective vulnerability in neurodegenerative diseases. Nat Neurosci 21(10):1350–1358

    Article  CAS  Google Scholar 

  2. Castillo X, Castro-Obregón S, Gutierrez Becker B, Gutiérrez-Ospina G, Karalis N, Khalil A et al (2019) Re-thinking the etiological framework of neurodegeneration. Front Neurosci 13:728

    Article  Google Scholar 

  3. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14(3):457–487

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu L, Wang HM, Li JL, Feng HX, Zhao WM, Zhang HY (2017) Dual anti-ischemic effects of rosmarinic acid n-butyl ester via alleviation of dapk-p53-mediated neuronal damage and microglial inflammation. Acta Pharmacol Sin 38(4):459–468

    Article  CAS  Google Scholar 

  5. Muhammad M (2019) Tumor necrosis factor alpha: a major cytokine of brain neuroinflammation. Cytokines. IntechOpen, London

    Google Scholar 

  6. Sang Q, Liu X, Wang L, Qi L, Sun W, Wang W, Sun Y, Zhang H (2018) Curcumin protects an SH-SY5Y cell model of Parkinson’s disease against toxic injury by regulating HSP90. Cell Physiol Biochem 51(2):681–691

    Article  CAS  Google Scholar 

  7. Sun P, Ding H, Liang M, Li X, Mo W, Wang X, Liu Y, He R, Hua Q (2014) Neuroprotective effects of geniposide in SH-SY5Y cells and primary hippocampal neurons exposed to Aβ42. Biomed Res Int. https://doi.org/10.1155/2014/284314

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee HS, Kim EN, Jeong GS (2020) Lupenone protects neuroblastoma SH-SY5y cells against methamphetamine-induced apoptotic cell death via PI3K/Akt/mTOR signaling pathway. Int J Mol Sci 21(5):1617

    Article  CAS  Google Scholar 

  9. Budanov AV (2014) The role of tumor suppressor p53 in the antioxidant defense and metabolism. Mutant p53 and MDM2 in cancer. Springer, Dordrecht, pp 337–358

    Chapter  Google Scholar 

  10. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis-the p53 network. J Cell Sci 116(20):4077–4085

    Article  CAS  Google Scholar 

  11. Li X, Gu S, Ling Y, Shen C, Cao X, Xie R (2015) p53 inhibition provides a pivotal protective effect against ischemia-reperfusion injury in vitro via mTOR signaling. Brain Res 1605:31–38

    Article  CAS  Google Scholar 

  12. Prajapati P, Sripada L, Singh K, Bhatelia K, Singh R, Singh R (2015) TNF-α regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochim Biophys Acta 1852(3):451–461

    Article  CAS  Google Scholar 

  13. Tweddle DA, Malcolm AJ, Cole M, Pearson AD, Lunec J (2001) p53 cellular localization and function in neuroblastoma: evidence for defective G1 arrest despite WAF1 induction in MYCN-amplified cells. Am J Pathol 158(6):2067–2077

    Article  CAS  Google Scholar 

  14. Bayazid AB, Park SH, Kim JG, Lim BO (2020) Green chicory leaf extract exerts anti-inflammatory effects through suppressing LPS-induced MAPK/NF-κB activation and hepatoprotective activity in vitro. Food Agric Immunol 31(1):513–532

    Article  CAS  Google Scholar 

  15. Bayazid AB, Kim JG, Park SH, Lim BO (2020) Antioxidant, anti-inflammatory, and antiproliferative activity of Mori Cortex Radicis extracts. Nat Prod Commun. https://doi.org/10.1177/1934578X19899765

    Article  Google Scholar 

  16. Li H, Sun J, Wang F, Ding G, Chen W, Fang R, Yao Y, Pang M, Lu ZQ, Liu J (2016) Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice. Brain Res 1642:70–78

    Article  CAS  Google Scholar 

  17. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulyás B (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263):263ra158

    Article  Google Scholar 

  18. Kim SY, Chae CW, Lee HJ, Jung YH, Choi GE, Kim JS, Lim JR, Lee JE, Cho JH, Park H, Park C (2020) Sodium butyrate inhibits high cholesterol-induced neuronal amyloidogenesis by modulating NRF2 stabilization-mediated ROS levels: involvement of NOX2 and SOD1. Cell Death Dis 11(6):1–9

    Article  Google Scholar 

  19. Kuefer R, Hofer MD, Altug V, Zorn C, Genze F, Kunzi-Rapp K, Hautmann RE, Gschwend JE (2004) Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. Br J Cancer 90(2):535–541

    Article  CAS  Google Scholar 

  20. Baorong Z, Jun T, Xinzhen Y, Wei L, Kun X (2007) Protective effect of sodium butyrate on the cell culture model of Huntington disease. Prog Nat Sci 17(7):784–788

    Article  Google Scholar 

  21. Hasnat MA, Pervin M, Cha KM, Kim SK, Lim BO (2015) Anti-inflammatory activity on mice of extract of ganoderma lucidum grown on rice via modulation of MAPK and NF-κB pathways. Phytochemistry 114:125–136

    Article  CAS  Google Scholar 

  22. Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, Jedrychowski MP, Costa AS, Higgins M, Hams E, Szpyt J (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556(7699):113–117

    Article  CAS  Google Scholar 

  23. Miao L, Tao H, Peng Y, Wang S, Zhong Z, El-Seedi H, Dragan S, Zengin G, San Cheang W, Wang Y, Xiao J (2019) The anti-inflammatory potential of Portulaca oleracea L. (purslane) extract by partial suppression on NF-κB and MAPK activation. Food Chem 290:239–245

    Article  CAS  Google Scholar 

  24. Mijan MA, Kim JY, Moon SY, Choi SH, Nah SY, Yang HJ (2019) Gintonin enhances proliferation, late stage differentiation, and cell survival from endoplasmic reticulum stress of oligodendrocyte lineage cells. Front Pharmacol 10:1211

    Article  Google Scholar 

  25. Jakaria M, Azam S, Cho DY, Haque M, Kim IS, Choi DK (2019) The methanol extract of Allium cepa L. protects inflammatory markers in LPS-induced BV-2 microglial cells and upregulates the antiapoptotic gene and antioxidant enzymes in N27-A cells. Antioxidants 8(9):348

    Article  CAS  Google Scholar 

  26. Frankola KA, Greig NH, Luo W, Tweedie D (2011) Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord 10(3):391–403

    Article  CAS  Google Scholar 

  27. Park KM, Bowers WJ (2010) Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell Signal 22(7):977–983

    Article  CAS  Google Scholar 

  28. Bal-Price A, Brown GC (2000) Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 75(4):1455–1464

    Article  CAS  Google Scholar 

  29. Lau D, Bading H (2009) Synaptic activity-mediated suppression of p53 and induction of nuclear calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition. J Neurosci 29(14):4420–4429

    Article  CAS  Google Scholar 

  30. Lee SY, Debnath T, Kim SK, Lim BO (2013) Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem Toxicol 60:439–447

    Article  CAS  Google Scholar 

  31. Ji RR, Xu ZZ, Gao YJ (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13(7):533–548

    Article  CAS  Google Scholar 

  32. Agyeman AS, Jun WJ, Proia DA, Kim CR, Skor MN, Kocherginsky M, Conzen SD (2016) Hsp90 inhibition results in glucocorticoid receptor degradation in association with increased sensitivity to paclitaxel in triple-negative breast cancer. Horm Cancer 7(2):114–126

    Article  CAS  Google Scholar 

  33. Piippo N, Korhonen E, Hytti M, Skottman H, Kinnunen K, Josifovska N, Petrovski G, Kaarniranta K, Kauppinen A (2018) Hsp90 inhibition as a means to inhibit activation of the NLRP3 inflammasome. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  34. Lanza M, Campolo M, Casili G, Filippone A, Paterniti I, Cuzzocrea S, Esposito E (2019) Sodium butyrate exerts neuroprotective effects in spinal cord injury. Mol Neurobiol 56(6):3937–3947

    Article  CAS  Google Scholar 

  35. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimer’s Dis 42(s3):S125–S152

    Article  Google Scholar 

  36. Corrêa SA, Eales KL (2012) The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct. https://doi.org/10.1155/2012/649079

    Article  PubMed  PubMed Central  Google Scholar 

  37. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the “Regional Specialized Industry Development Program” supervised by the Korea Institute for Advancement of Technology (KIAT).

Author information

Authors and Affiliations

Authors

Contributions

ABB designed the study, carried out the experiments, and wrote the manuscript. ABB, YAJ, YMK and JGK analyzed the data and reviewed the manuscript. BOL reviewed and supervised the study.

Corresponding author

Correspondence to Beong Ou Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayazid, A., Jang, Y.A., Kim, Y.M. et al. Neuroprotective Effects of Sodium Butyrate through Suppressing Neuroinflammation and Modulating Antioxidant Enzymes. Neurochem Res 46, 2348–2358 (2021). https://doi.org/10.1007/s11064-021-03369-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03369-z

Keywords

Navigation