Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 4, 2016

Numerical solution of the infinite-dimensional LQR problem and the associated Riccati differential equations

  • Peter Benner EMAIL logo and Hermann Mena

Abstract

The numerical analysis of linear quadratic regulator design problems for parabolic partial differential equations requires solving Riccati equations. In the finite time horizon case, the Riccati differential equation (RDE) arises. The coefficient matrices of the resulting RDE often have a given structure, e.g., sparse, or low-rank. The associated RDE usually is quite stiff, so that implicit schemes should be used in this situation. In this paper, we derive efficient numerical methods for solving RDEs capable of exploiting this structure, which are based on a matrix-valued implementation of the BDF and Rosenbrock methods. We show that these methods are suitable for large-scale problems by working only on approximate low-rank factors of the solutions. We also incorporate step size and order control in our numerical algorithms for solving RDEs. In addition, we show that within a Galerkin projection framework the solutions of the finite-dimensional RDEs converge in the strong operator topology to the solutions of the infinite-dimensional RDEs. Numerical experiments show the performance of the proposed methods.

MSC 2010: 65L06; 65N12; 49N05; 93C20; 93D15

Acknowledgment

We thank Jens Saak for providing the first example. We also would like to thank the referees for their valuable comments. They greatly helped to improve this manuscript.

References

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations in Control and Systems Theory, Birkhäuser, Basel, Switzerland, 2003.10.1007/978-3-0348-8081-7Search in Google Scholar

[2] A. C. Antoulas, D. C. Sorensen, and Y. Zhou, On the decay rate of Hankel singular values and related issues, Syst. Contr. Lett. 46 (2000), No. 5, 323–342.10.1016/S0167-6911(02)00147-0Search in Google Scholar

[3] E. Arias, V. Hernández, J. Ibanes, and J. Peinado, A family of BDF algorithms for solving Differential Matrix Riccati Equations using adaptive techniques, Procedia Computer Science 1 (2010), No. 1, 2569–2577.10.1016/j.procs.2010.04.290Search in Google Scholar

[4] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, PA, SIAM, Philadelphia, 1998.10.1137/1.9781611971392Search in Google Scholar

[5] H. T. Banks and K. Kunisch, The linear regulator problem for parabolic systems, SIAM J. Cont. Optim. 22 (1984), 684–698.10.1137/0322043Search in Google Scholar

[6] P. Benner, Solving large-scale control problems, IEEEControl Systems Magazine14 (2004), No. 1, 44–59.Search in Google Scholar

[7] P. Benner and S. Hein, Model predictive control for nonlinear parabolic differential equations based on a linear quadratic Gaussian design, In: Proc. in Applied Mathematics and Mechanics, 9, pp. 613–614, 2009.10.1002/pamm.200910278Search in Google Scholar

[8] P. Benner and S. Hein, Model Predictive Control Based on an LQG Design for Time-Varying Linearizations, Chemnitz Scientific Computing Preprints, Report No. 09-07, TU Chemnitz (Germany), 2010.Search in Google Scholar

[9] P. Benner and S. Hein, MPC/LQG for infinite-dimensional systems using time-invariant linearizations, In: System Modeling and Optimization. 25th IFIP TC 7 Conference, Berlin, Germany, September 12-16, 391, pp. 217–224, IFIP AICT, 2011.10.1007/978-3-642-36062-6_22Search in Google Scholar

[10] P. Benner, P. Kürschner, and J. Saak, Eflcient handling of complex shift parameters in the low-rank cholesky factor ADI method, Numerical Algorithms62 (2012), No. 2, 225–251.10.1007/s11075-012-9569-7Search in Google Scholar

[11] P. Benner, J. R. Li, and T. Penzl, Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems, Numer. Lin. Alg. Appl. 15 (2008), No. 9, 755–777.10.1002/nla.622Search in Google Scholar

[12] P. Benner, V. Mehrmann, and D. Sorensen (eds.), Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering 45, Springer-Verlag, Berlin/Heidelberg, Germany, 2005.10.1007/3-540-27909-1Search in Google Scholar

[13] P. Benner and H. Mena, BDF methods for large-scale differential Riccati equations, In: Proc. of Mathematical Theory of Network and Systems, MTNS 2004 (Eds. B. De Moor, B. Motmans, J.Willems, P. Van Dooren, and V. Blondel), 2004.Search in Google Scholar

[14] P. Benner and H. Mena, Numerical Solution of the Infinite-Dimensional LQR-Problem and the Associated Differential Riccati Equations, Max Planck Institute Magdeburg, Preprint No. MPIMD/12-13, August 2012, Available from http://www.mpimagdeburg.mpg.de/preprints/.Search in Google Scholar

[15] P. Benner and H. Mena, Rosenbrock methods for solving differential Riccati equations, IEEE Trans. Automat. Control58 (2013), No. 11, 2950–2957.10.1109/TAC.2013.2258495Search in Google Scholar

[16] P. Benner and J. Saak, Suboptimality estimates for the semi-discretized LQR probelm for parabolic PDEs, In: Proc. in Applied Mathematics and Mechanics, 10, pp. 591–592, 2010.10.1002/pamm.201010288Search in Google Scholar

[17] P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey, GAMM Mitteilungen36 (2013), No. 1, 32–52.10.1002/gamm.201310003Search in Google Scholar

[18] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Volume I, Systems & Control: Foundations & Applications, Birkäuser, Boston–Basel–Berlin, 1992.10.1007/978-1-4612-2750-2Search in Google Scholar

[19] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Volume II, Systems & Control: Foundations & Applications, Birkäuser, Boston–Basel–Berlin, 1992.10.1007/978-1-4612-2750-2Search in Google Scholar

[20] J. G. Blom, W. Hundsdorfer, E. J. Spee, and J. G. Verwer, A second order Rosenbrock method applied to photochemical dispersion problems, SIAM J. Sci. Comput. 20 (1999), No. 4, 1456–1480.10.1137/S1064827597326651Search in Google Scholar

[21] F. Bornemann and P. Deuflhard, Scientific Computing with Ordinary Differential Equations, Text in Applied Mathematics 42, Springer, New York, 2002.10.1007/978-0-387-21582-2Search in Google Scholar

[22] C. Choi and A. J. Laub, Eflcient matrix-valued algorithms for solving stiff Riccati differential equations, IEEE Trans. Automat. Control35 (1990), 770–776.10.1109/9.57015Search in Google Scholar

[23] R. F. Curtain and A. J. Pritchard, Infinite-dimensional Riccati equation for systems defined by evolution operators, SIAM J. Cont. Optim. 14 (1976), 951–983.10.1137/0314061Search in Google Scholar

[24] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear System Theory, Texts in Applied Mathematics, Springer-Verlag, New York, 1995.10.1007/978-1-4612-4224-6Search in Google Scholar

[25] L. Dieci, Numerical integration of the differential Riccati equation and some related issues, SIAM J. Numer. Anal. 29 (1992), No. 3, 781–815.10.1137/0729049Search in Google Scholar

[26] E. Eich, Projizierende Mehrschrittverfahren zur numerischen Lösung von Bewegungsgleichungen technischer Mehrkörpersysteme mit Zwangsbedingungen und Unstetigkeiten, Ph.D. thesis, University of Augsburg, 1991.Search in Google Scholar

[27] J. S. Gibson, The Riccati integral equation for optimal control problems in Hilbert spaces, SIAM J. Cont. Optim. 17 (1979), No. 4, 537–565.10.1137/0317039Search in Google Scholar

[28] L. Grasedyck, Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation, Numer. Lin. Alg. Appl. 11 (2004), 371–389.10.1002/nla.366Search in Google Scholar

[29] E. Hairer and G.Wanner, Solving Ordinary Differential Equations II-Stiff and Differerntial Algebraic Problems, Springer Series in Computational Mathematics, Springer-Verlag, New York, 2000.Search in Google Scholar

[30] S. Hein, MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs, Ph.D. thesis, TU Chemnitz, February 2010, available from http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000134.Search in Google Scholar

[31] K. Ito and K. Kunisch, Receding horizon optimal control for infinite dimensional systems, ESAIM Control Optim. Calc. Var. 8 (2002), 741–760.10.1051/cocv:2002032Search in Google Scholar

[32] K. Ito and K. Kunisch, Receding horizon control with incomplete observations, SIAM J. Cont. Optim. 45 (2006), No. 1, 207–225.10.1137/S0363012903437988Search in Google Scholar

[33] M. Kroller and K. Kunisch, Convergence rates for the feedback operators arising in the linear quadratic regulator problem governed by parabolic equations, SIAM J. Numer. Anal. 28 (1991), No. 5, 1350–1385.10.1137/0728071Search in Google Scholar

[34] N. Lang, H. Mena, and J. Saak, On the benefits of the LDL factorization for large-scale differential matrix equation solvers, Lin. Alg. Appl. 480 (2015), 44–71.10.1016/j.laa.2015.04.006Search in Google Scholar

[35] I. Lasiecka and R. Triggiani, Differential and Algebraic Riccati Equations with Application to Boundary/Point Control Problems: Continuous Theory and Approximation Theory, Lecture Notes in Control and Information Sciences 164, Springer, Berlin, 1991.10.1007/BFb0006880Search in Google Scholar

[36] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories I. Abstract Parabolic Systems, Cambridge University Press, Cambridge, UK, 2000.10.1017/CBO9781107340848Search in Google Scholar

[37] J. R. Li and J. White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl. 24 (2002), No. 1, 260–280.10.1137/S0895479801384937Search in Google Scholar

[38] H. Mena, Numerical Solution of Differential Riccati Equations Arising in Optimal Control Problems for Parabolic Partial Differential Equations, Ph.D. thesis, Escuela Politecnica Nacional, 2007.10.1002/pamm.200700913Search in Google Scholar

[39] T. Penzl, Numerische Lösung großer Lyapunov-Gleichungen, Ph.D. thesis, Technische Universität Chemnitz, 1998.Search in Google Scholar

[40] T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case, Sys. Control Lett. 40 (2000), 139–144.10.1016/S0167-6911(00)00010-4Search in Google Scholar

[41] T. Penzl, Lyapack Users Guide, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, Report No. SFB393/00-33, 09107 Chemnitz, Germany, 2000, Available from http://www.tu-chemnitz.de/sffi393/sffi00pr.html.Search in Google Scholar

[42] I. R. Petersen, V. A. Ugrinovskii, and A. V. Savkin, Robust Control Design Using HMethods, Springer-Verlag, London, UK, 2000.10.1007/978-1-4471-0447-6Search in Google Scholar

[43] A. J. Pritchard and D. Salamon, The linear quadratic control problem for infinite dimensional systems with unbounded input and output operators, SIAM J. Cont. Optim. 25 (1987), 121–144.10.1137/0325009Search in Google Scholar

[44] J. Saak, Eflziente numerische Lösung eines Optimalsteuerungsproblems für die Abkühlung von Stahlprofilen, Diplomarbeit, Fachbereich 3/Mathematik und Informatik, Universität Bremen, D-28334 Bremen, 2003.Search in Google Scholar

[45] J. Sabino, Solution of Large-Scale Lyapunov Equations via the Block Modified Smith Method, Ph.D. thesis, Rice University, Houston, Texas, 2007.Search in Google Scholar

[46] R. Schneider, FEINS: Finite element solver for shape optimization with adjoint equations, In: Progress in Industrial Mathematics at ECMI 2010, Mathematics in Industry, Springer, 2011, Software available at http://www.feins.org/.10.1007/978-3-642-25100-9_66Search in Google Scholar

[47] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput. 29 (2007), No. 3, 1268–1288.10.1137/06066120XSearch in Google Scholar

[48] F. Tröltzsch and A. Unger, Fast solution of optimal control problems in the selective cooling of steel, Z. Angew. Math. Mech. 81 (2001), 447–456.10.1002/1521-4001(200107)81:7<447::AID-ZAMM447>3.0.CO;2-USearch in Google Scholar

[49] X.Wu, B. Jacob, and H. Elbern, Optimal Actuator and Observation Location for Time-Varying Systems on a Finite-Time Horizon, arXiv:1503.09031, March 2015.Search in Google Scholar

[50] J. Zabczyk, Remarks on the algebraic Riccati equation, Appl. Math. Optim. 2 (1976), 251–258.10.1007/BF01464270Search in Google Scholar

Received: 2016-4-26
Revised: 2016-4-28
Accepted: 2016-5-8
Published Online: 2016-5-4
Published in Print: 2018-3-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2016-1039/html
Scroll to top button