Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 20, 2018

Mathematical and computational studies of fractional reaction–diffusion system modelling predator–prey interactions

  • Kolade Owolabi and Edson Pindza EMAIL logo

Abstract

This paper provides the essential mathematical basis for computational studies of space fractional reaction–diffusion systems, from biological and numerical analysis perspectives. We adopt linear stability analysis to derive conditions on the choice of parameters that lead to biologically meaningful equilibria. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. For the solution of the full reaction–diffusion system modelled by the fractional partial differential equations, we introduced the Fourier transform method to discretize in space and advance the resulting system of ordinary differential equation in time with the fourth-order exponential time differencing scheme. Results of numerical experiments are presented.

MSC 2010: 34A34; 35A05; 35K57; 65L05; 65M06; 93C10

Acknowledgment

The authors are grateful to all of the anonymous reviewers for their valuable suggestions.

References

[1] A. Atangana, Derivative with a New Parameter : Theory, Methods and Applications, Academic Press, New York, 2016.10.1016/B978-0-08-100644-3.00002-7Search in Google Scholar

[2] A. Atangana, Fractional Operators With Constant and Variable Order with Application to Geo-Hydrology, Academic Press, New York, 2017.Search in Google Scholar

[3] F. X. Chang, J. C. Wu, and S. H. Dai, The fractional dispersion in pore medium and Lévy distribution, J. Nanjing Univ. of Information Science & Technology, 40 (2004) 287–291.Search in Google Scholar

[4] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176 (2002) 430–455.10.1006/jcph.2002.6995Search in Google Scholar

[5] B. Dubey and R. K. Upadhyay, Persistence and extinction of one-prey and two-predators system, Nonlinear Analysis: Modelling & Control, 9 (2004) 307–329.10.15388/NA.2004.9.4.15147Search in Google Scholar

[6] M. R. Garvie and C. Trenchea, Spatiotemporal dynamics of two generic predator–prey models, J. Biological Dynamics4 (2010) 559–570.10.1080/17513750903484321Search in Google Scholar PubMed

[7] J. F. Gómez-Aguilar, M. G. López-López, V. M. Alvarado-Martínez, J. Reyes-Reyes, and M. Adam-Medina, Modeling diffusive transport with a fractional derivative without singular kernel, Phys. A: Stat. Mechanics Appl., 447 (2016) 467–481.10.1016/j.physa.2015.12.066Search in Google Scholar

[8] J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: power, exponential decay and Mittag–Leffler laws and applications, European Phys. J. Plus, 132 (2017), No. 13. 10.1140/epjp/i2017-11293-3.Search in Google Scholar

[9] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, 19 (2010) 209–286.10.1017/S0962492910000048Search in Google Scholar

[10] A. K. Kassam and L. N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Computing, 26 (2005) 1214–1233.10.1137/S1064827502410633Search in Google Scholar

[11] A. A. Kilbas, Yu. F. Luchko, H. Martínez, and J. J. Trujillo, Fractional Fourier transform in the framework of fractional calculus operators, Integral Transforms & Special Functions, 21 (2010) 779–795.10.1080/10652461003676099Search in Google Scholar

[12] J. La Salle and S. Lefschetz, Stability by Liapunov’s Direct Method with Applications, Academic press, New York, 1961.Search in Google Scholar

[13] X. Lian, Y. Yue, and H. Wang, Pattern formation in a cross-diffusive ratio-dependent predator–prey model, Discrete Dynamics in Nature and Society, Article ID 814069, (2012) 10.1155/2012/814069.Search in Google Scholar

[14] B. V. Minchev, Exponential Integrators for Semilinear Problems, PhD thesis, University of Bergen, 2004.Search in Google Scholar

[15] J. D. Murray, Mathematical Biology I: An Introduction, Springer-Verlag, New York, 2002.10.1007/b98868Search in Google Scholar

[16] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag, Berlin, 2003.10.1007/b98869Search in Google Scholar

[17] K. M. Owolabi and K. C. Patidar, Numerical solution of singular patterns in one-dimensional Gray–Scott-like models, Int. J. Nonlinear Sci. Numer. Simulations, 15 (2014) 437–462.10.1515/ijnsns-2013-0124Search in Google Scholar

[18] K. M. Owolabi and K. C. Patidar, Higher-order time-stepping methods for time-dependent reaction–diffusion equations arising in biology, Applied Math. & Computation, 240 (2014), 30–50.10.1016/j.amc.2014.04.055Search in Google Scholar

[19] K. M. Owolabi, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction–diffusion systems, Chaos, Solitons & Fractals, 93 (2016) 89–98.10.1016/j.chaos.2016.10.005Search in Google Scholar

[20] K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, European Phys. J. Plus, 131 (2016), No. 335. 10.1140/epjp/i2016-16335-8.Search in Google Scholar

[21] K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Commun. Nonlinear Sci. & Numer. Simulation, 44 (2017) 304–317.10.1016/j.cnsns.2016.08.021Search in Google Scholar

[22] K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense, Chaos, Solitons & Fractals, 99 (2017) 171–179.10.1016/j.chaos.2017.04.008Search in Google Scholar

[23] K. M. Owolabi and A. Atangana, Numerical simulation of noninteger order system in subdiffussive, diffusive, and superdiffusive scenarios, J. Comput. Nonlinear Dynamics, 12 (2017) 031010-1, 1–7, 10.1115/1.4035195.Search in Google Scholar

[24] K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos, Solitons & Fractals, 103 (2017) 544–554.10.1016/j.chaos.2017.07.013Search in Google Scholar

[25] K. M. Owolabi, Mathematical study of multispecies dynamics modeling predator–prey spatial interactions, J. Numer. Math., 25 (2017) 1–16.10.1515/jnma-2015-0094Search in Google Scholar

[26] K. M. Owolabi and A. Atangana, Mathematical analysis and numerical simulation of two-component system with non-integer-order derivative in high dimensions, Advances in Difference Equations, 2017 (2017), 223, 10.1186/s13662-017-1286-z.Search in Google Scholar

[27] H. M. Ozaktas, Z. Zalevsky and M. A. Kutay, The Fractional Fourier Transform, Wiley, Chichester, 2001.10.23919/ECC.2001.7076127Search in Google Scholar

[28] E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction–diffusion equations, Commun. Nonlinear Sci. & Numer. Simul., 40 (2016) 112–128.10.1016/j.cnsns.2016.04.020Search in Google Scholar

[29] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.Search in Google Scholar

[30] M. Rafique and M. Abdul Qader, Population dynamics model for coexistence of three interacting species, Appl. Comput. Math. 4 (2015) 258–263.10.11648/j.acm.20150404.14Search in Google Scholar

[31] F. Rao, Spatiotemporal pattern in a self- and cross-diffusive predation model with the Allee effect, Discrete Dynamics Nature & Society (2013) 681641.10.1155/2013/681641Search in Google Scholar

[32] Y. Saad, Analysis of some Krylov susbspace approximations to the matrix exponential operator, SIAM J. Numer. Analysis131 (1992) 209–228.10.1137/0729014Search in Google Scholar

[33] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993.Search in Google Scholar

[34] S. Samko, Denseness of the spaces ϕV of Lizorkin type in the mixed Lp (Rn)-spaces, Studia Mathematica, 113 (1995) 199– 210.10.4064/sm-113-3-199-210Search in Google Scholar

[35] T. Schmelzer and L. N. Trefethen, Evaluating matrix functions for exponential integrators via Carathéodory–Fejér approximation and contour integrals, Electr. Trans. Numer. Anal., 29 (2007) 1–18.Search in Google Scholar

[36] L. N. Trefethen and H. M. Gutknecht, The Carathéodory–Fejér method for real rational approximation, SIAM J. Numer. Analysis, 20 (1983) 420–436.10.1137/0720030Search in Google Scholar

[37] V. Volpert and S. Petrovskii, Reaction–diffusion waves in biology, Physics of Life Reviews, 6 (2009) 267–310.10.1016/j.plrev.2009.10.002Search in Google Scholar PubMed

[38] C. J. Xu, X. H. Tang, and M. X. Liao, Stability and bifurcation analysis of a delayed predator–prey model of prey dispersal in two-patch environments, Applied Math. & Computation, 216 (2010) 2920–2936.10.1016/j.amc.2010.04.004Search in Google Scholar

[39] C. J. Xu, X. H. Tang, M. X. Liao, and X. F. He, Bifurcation analysis in a delayed Lokta–Volterra predator–prey model with two delays, Nonlinear Dynamics, 66 (2011) 169–183.10.1007/s11071-010-9919-8Search in Google Scholar

[40] C. Xu, X. Tang, and M. Liao, Bifurcation analysis of a delayed predator–prey model of prey migration and predator switching, Bulletin of the Korean Mathematical Society, 50 (2013) 353–373.10.4134/BKMS.2013.50.2.353Search in Google Scholar

[41] C. Xu and M. Liao, Bifurcation behaviours in a delayed three-species food-chain model with Holling type-II functional response, Applicable Analysis, 92 (2013) 2468–2486.10.1080/00036811.2012.742187Search in Google Scholar

[42] C. Xu and P. Li, Bifurcation Behaviors Analysis on a Predator–Prey Model with Nonlinear Diffusion and Delay, J. Dynam. & Control Systems, 20 (2014) 105–122.10.1007/s10883-013-9208-1Search in Google Scholar

[43] C. Xu and P. Li, Oscillations for a delayed predator–prey model with Hassell–Varley-type functional response, Comptes Rendus Biologies, 338 (2015) 227–240.10.1016/j.crvi.2015.01.002Search in Google Scholar PubMed

Received: 2016-5-10
Revised: 2017-8-27
Accepted: 2017-9-1
Published Online: 2018-6-20
Published in Print: 2018-6-26

© 2018 Walter de Gruyter GmbH Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2016-1044/html
Scroll to top button