Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 1, 2018

Multigoal-oriented error estimates for non-linear problems

  • Bernhard Endtmayer , Ulrich Langer and Thomas Wick EMAIL logo

Abstract

In this work, we further develop multigoal-oriented a posteriori error estimation with two objectives in mind. First, we formulate goal-oriented mesh adaptivity for multiple functionals of interest for nonlinear problems in which both the Partial Differential Equation (PDE) and the goal functionals may be nonlinear. Our method is based on a posteriori error estimates in which the adjoint problem is used and a partition-of-unity is employed for the error localization that allows us to formulate the error estimator in the weak form. We provide a careful derivation of the primal and adjoint parts of the error estimator. The second objective is concerned with balancing the nonlinear iteration error with the discretization error yielding adaptive stopping rules for Newton’s method. Our techniques are substantiated with several numerical examples including scalar PDEs and PDE systems, geometric singularities, and both nonlinear PDEs and nonlinear goal functionals. In these tests, up to six goal functionals are simultaneously controlled.

JEL Classification: 65N30; 65M60; 65J15; 49M15; 35Q74

Acknowledgment

This work has been supported by the Austrian Science Fund (FWF) under the grant P 29181 ‘Goal-Oriented Error Control for Phase-Field Fracture Coupled to Multiphysics Problems’. The first author thanks the Doctoral Program on Computational Mathematics at JKU Linz the Upper Austrian Goverment for the support when starting the preparation of this work. The third author was supported by the Doctoral Program on Computational Mathematics during his visit at the Johannes Kepler University Linz in March 2018.

  1. Funding: This work has been supported by the Austrian Science Fund (FWF) under the grant P 29181.

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, Elsevier Science, 2003.Search in Google Scholar

[2] M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics, John Wiley & Sons, New York, 2000.10.1002/9781118032824Search in Google Scholar

[3] J. Andersson and H. Mikayelyan, The asymptotics of the curvature of the free discontinuity set near the cracktip for the minimizers of the Mumford Shah functional in the plain. A revision, arXiv: 1205.5328v2, 2015.Search in Google Scholar

[4] D. N. Arnold, D. Boffi, and R. S. Falk, Approximation by quadrilateral finite elements, Math. Comp. 71 (2002), 909 922.10.1090/S0025-5718-02-01439-4Search in Google Scholar

[5] W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and D. Wells, The deal.II library, version 8.4, J. Numer. Math. 24 (2016), 135 141.10.1515/jnma-2016-1045Search in Google Scholar

[6] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II   a general purpose object oriented finite element library, ACM Trans. Math. Softw. 33 (2007), 24/1 27.10.1145/1268776.1268779Search in Google Scholar

[7] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Birkhäuser Verlag, Boston, 2003.10.1007/978-3-0348-7605-6Search in Google Scholar

[8] R. Becker, C. Johnson, and R. Rannacher, Adaptive error control for multigrid finite element methods, Computing55 (1995), 271 288.10.1007/BF02238483Search in Google Scholar

[9] R. Becker and R. Rannacher, Weighted a posteriori error control in FE methods, In: ENUMATH'97 (Eds. H. G. Bock et al.), World Sci. Publ., Singapore, 1995.Search in Google Scholar

[10] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer. 10 (2001), 1 102.10.1017/S0962492901000010Search in Google Scholar

[11] A. Bonnet and G. David, Cracktip is a Global Mumford-Shah Minimizer, Asterisque No. 274, 2001.Search in Google Scholar

[12] M. Braack and A. Ern, A posteriori control of modeling errors and discretization errors, Multiscale Model. Simul. 1 (2003), 221 238.10.1137/S1540345902410482Search in Google Scholar

[13] D. Braess, Finite Elemente; Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, 4., überarbeitete und erweiterte Auflage ed, Springer-Verlag, Berlin Heidelberg, 2007.Search in Google Scholar

[14] D. Breit, A. Cianchi, L. Diening, T. Kuusi, and S. Schwarzacher, The p-Laplace system with right-hand side in divergence form: inner and up to the boundary pointwise estimates, Nonlinear Anal. 153 (2017), 200 212.10.1016/j.na.2016.06.011Search in Google Scholar

[15] G. F. Carey and J. T. Oden, Finite Elements. Volume III. Computational Aspects, The Texas Finite Element Series, Prentice-Hall, Inc., Englewood Cliffs, 1984.Search in Google Scholar

[16] C. Carstensen and R. Klose, A posteriori finite element error control for the p-Laplace problem, SIAM J. Sci. Comput. 25 (2003), 792 814.10.1137/S1064827502416617Search in Google Scholar

[17] P. G. Ciarlet, Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.10.1137/1.9780898719208Search in Google Scholar

[18] T. A. Davis, Algorithm 832: UMFPACK V4.3   an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30 (2004), 196 199.10.1145/992200.992206Search in Google Scholar

[19] P. Deuflhard, Newton Methods for Nonlinear Problems, Springer Series in Computational Mathematics, Vol. 35, Springer, Berlin Heidelberg, 2011.10.1007/978-3-642-23899-4Search in Google Scholar

[20] L. Diening and M. Růžička, Interpolation operators in Orlicz-Sobolev spaces, Numer. Math. 107 (2007), 107 129.10.1007/s00211-007-0079-9Search in Google Scholar

[21] B. Endtmayer and T. Wick, A partition-of-unity dual-weighted residual approach for multi-objective goal functional error estimation applied to elliptic problems, Comput. Methods Appl. Math. 17 (2017), 575 599.10.1515/cmam-2017-0001Search in Google Scholar

[22] A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), A1761 A1791.10.1137/120896918Search in Google Scholar

[23] C. Giannelli, B. Jüttler, and H. Speleers, THB-splines: the truncated basis for hierarchical splines, Comput. Aided Geom. Design29 (2012), 485 498.10.1016/j.cagd.2012.03.025Search in Google Scholar

[24] R. Glowinski and A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires, ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique9 (1975), 41 76.10.1051/m2an/197509R200411Search in Google Scholar

[25] W. Hackbusch, Multigrid Methods and Applications, Springer, 2003.10.1002/0470091355.ecm017Search in Google Scholar

[26] W. Han, A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations, Springer, 2005.Search in Google Scholar

[27] R. Hartmann, Multitarget error estimation and adaptivity in aerodynamic flow simulations, SIAM J. Sci. Comput. 31 (2008), 708 731.10.1137/070710962Search in Google Scholar

[28] R. Hartmann and P. Houston, Goal-oriented a posteriori error estimation for multiple target functionals, In: Proc. of Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2003, pp. 579 588.10.1007/978-3-642-55711-8_54Search in Google Scholar

[29] A. Hirn, Finite element approximation of singular power-law systems, Math. Comp. 82 (2013), 1247 1268.10.1090/S0025-5718-2013-02668-3Search in Google Scholar

[30] P. Houston, B. Senior, and E. Süli, $hp$-discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity, Int. J. Numer. Methods Fluids40 (2002), 153 169,10.1002/fld.271Search in Google Scholar

[31] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Comput. Methods Appl. Mech. Engrg. 194 (2005), 4135 4195.10.1016/j.cma.2004.10.008Search in Google Scholar

[32] K. Kergrene, S. Prudhomme, L. Chamoin, and M. Laforest, A new goal-oriented formulation of the finite element method, Comput. Methods Appl. Mech. Engrg. 327 (2017), 256 276.10.1016/j.cma.2017.09.018Search in Google Scholar

[33] M. A. Khamsi and W. A. Kirk, An introduction to metric spaces and fixed point theory, Pure and Applied Mathematics, Wiley-Interscience, New York, 2001.10.1002/9781118033074Search in Google Scholar

[34] S. K. Kleiss and S. K. Tomar, Guaranteed and sharp a posteriori error estimates in isogeometric analysis, Comput. Math. Appl. 70 (2015), 167 190.10.1016/j.camwa.2015.04.011Search in Google Scholar

[35] U. Langer, S. Matculevich, and S. Repin, Functional type error control for stabilised space-time IgA approximations to parabolic problems, In: Large-Scale Scientific Computing (LSSC 2017) (Eds. I. Lirkov and S. Margenov), Lecture Notes in Computer Science (LNCS), Springer-Verlag, 2017, pp. 57 66.10.1007/978-3-319-73441-5_5Search in Google Scholar

[36] U. Langer, S. Matculevich and S. Repin, Guaranteed error control bounds for the stabilised space-time IgA approximations to parabolic problem, arXiv:1712.06017 [math.NA], 2017.Search in Google Scholar

[37] P. Lindqvist, Notes on the p-Laplace equation, Report No. 102, University of Jyväskylä, Department of Mathematics and Statistics, 2006.Search in Google Scholar

[38] W. B. Liu and J. W. Barrett, A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation, Nonlinear Analysis: Theory, Methods and Applications21 (1993), 379 387.10.1016/0362-546X(93)90081-3Search in Google Scholar

[39] W. B. Liu and J. W. Barrett, Higher-order regularity for the solutions of some degenerate quasilinear elliptic equations in the plane, SIAM J. Math. Anal. 24 (1993), 1522 1536.10.1137/0524086Search in Google Scholar

[40] W. B. Liu and J. W. Barrett, A remark on the regularity of the solutions of the p-Laplacian and its application to their finite element approximation, J. Math. Anal. Appl. 178 (1993), 470 487.10.1006/jmaa.1993.1319Search in Google Scholar

[41] D. Meidner, R. Rannacher, and J. Vihharev, Goal-oriented error control of the iterative solution of finite element equations, J. Numer. Math. 17 (2009), 143 172.10.1515/JNUM.2009.009Search in Google Scholar

[42] P. Neittaanmäki and S. Repin, Reliable Methods for Computer Simulation: Error Control and Posteriori Estimates, Elsevier, Amsterdam, 2004.Search in Google Scholar

[43] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Ser. Oper. Res. Financial Engrg., 2006.Search in Google Scholar

[44] D. Pardo, Multigoal-oriented adaptivity for hp-finite element methods, Procedia Computer Science1 (2010), 1953 1961.10.1016/j.procs.2010.04.219Search in Google Scholar

[45] R. Rannacher and J. Vihharev, Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors, J. Numer. Math. 21 (2013), 23 61.10.1515/jnum-2013-0002Search in Google Scholar

[46] R. Rannacher, A. Westenberger, and W. Wollner, Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error, J. Numer. Math. 18 (2010), 303 327.10.1515/jnum.2010.015Search in Google Scholar

[47] S. Repin, A Posteriori Estimates for Partial Differential Equations, Radon Series on Computational and Applied Mathematics, Vol. 4, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.Search in Google Scholar

[48] A. Reusken, Convergence of the multigrid full approximation scheme for a class of elliptic mildly nonlinear boundary value problems, Numer. Math. 52 (1988), 251 277.10.1007/BF01398879Search in Google Scholar

[49] T. Richter and T. Wick, Variational localizations of the dual weighted residual estimator, J. Comput. Appl. Math. 279 (2015), 192 208.10.1016/j.cam.2014.11.008Search in Google Scholar

[50] W. Sierpinski, General Topology, Mathematical Expositions, No. 7, University of Toronto Press, Toronto, 1952.10.3138/9781487584894Search in Google Scholar

[51] P. Stolfo, A. Rademacher, and A. Schröder, Dual weighted residual error estimation for the finite cell method, Fakultät für Mathematik, TU Dortmund, Report, September 2017, Ergebnisberichte des Instituts für Angewandte Mathematik, Nummer 576.Search in Google Scholar

[52] I. Toulopoulos and T. Wick, Numerical methods for power-law diffusion problems, SIAM J. Sci. Comput. 39 (2017), A681 A710.10.1137/16M1067792Search in Google Scholar

[53] E. H. van Brummelen, S. Zhuk, and G. J. van Zwieten, Worst-case multi-objective error estimation and adaptivity, Comput. Methods Appl. Mech. Engrg. 313 (2017), 723 743.10.1016/j.cma.2016.10.007Search in Google Scholar

[54] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York Stuttgart, 1996.Search in Google Scholar

[55] S. Weisser and T. Wick, The dual-weighted residual estimator realized on polygonal meshes, Comput. Methods Appl. Math., 18 (2017), No. 4, 753 776.10.1515/cmam-2017-0046Search in Google Scholar

[56] T. Wick, Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity, Comput. Mech. 57 (2016), 1017 1035.10.1007/s00466-016-1275-1Search in Google Scholar

Received: 2018-03-30
Revised: 2018-07-13
Accepted: 2018-07-26
Published Online: 2018-08-01
Published in Print: 2019-12-18

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2018-0038/html
Scroll to top button