Skip to main content
Log in

An Analytical Review on Rough Set Based Image Clustering

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Clustering is one of the most vital image segmentation techniques. However, proper image clustering has always been a challenging task due to blurred and vague areas near to concerned object boundaries. Therefore, rough set based clustering techniques like Rough k-means (RKM) has been employed in image clustering domain because rough set concept can handle the overlapping clusters to a great extent. RKM shows the performance in image clustering domain as a similarity based clustering model like K-Means and Fuzzy C-Means. Therefore, this paper presents an up-to-date review on rough set based image clustering approaches with their merits and demerits. The measures of similarity as well as the evaluation criteria for rough clustering are also discussed in this study. Beside that the key issues which are involved during the development of rough set based clustering models are investigated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bong CW, Rajeswari M (2012) Multiobjective clustering with metaheuristic: current trends and methods in image segmentation. IET Image Process 6(1):1–10

    Article  MathSciNet  Google Scholar 

  2. Dhal KG, Das A, Ray S, Gálvez J, Das S(2020) Nature-inspired optimization algorithms and their application in multi-thresholding image segmentation. Arch Comput Methods Eng 27(3):855–888

  3. Dhal KG, Ray S, Das S, Biswas A, Ghosh S (2019) Hue-preserving and Gamut problem-free histopathology image enhancement. Iran J Sci Technol Trans Electr Eng 43(3):645–672

    Article  Google Scholar 

  4. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  5. Pakhira MK, January (2015) A fast k-means algorithm using cluster shifting to produce compact and separate clusters. Int J Eng 28(1):35–43

    Google Scholar 

  6. Lingras P, Peters G (2011) Rough clustering. Adv Rev 1:64–72

    Google Scholar 

  7. Pawlak Z (1992) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  8. Lingras P, West C (2002): Interval set clustering of web users with rough k-means. Technical Report 2002-002, Department of Mathematics and Computer Science, St. Mary’s University, Halifax, Canada

  9. Lingras P, West C (2004) Interval set clustering of web users with rough k-means. J Intell Inf Syst 23:5–16

    Article  MATH  Google Scholar 

  10. Peters G (2006) Some refinements of rough k-means. Pattern Recog 39:1481–1491

    Article  MATH  Google Scholar 

  11. Dhal KG, Gálvez J, Ray S, Das A, Das S (2020) Acute lymphoblastic leukemia image segmentation driven by stochastic fractal search. Multimed Tools Appl, 79, 12227–12255. https://doi.org/10.1007/s11042-019-08417-z

  12. Dhal KG, Gálvez J, Das S (2019) Toward the modification of flower pollination algorithm in clustering-based image segmentation. Neural Comput Appl 32(8):3059–3077

  13. Yao YY, Lin TY (1996) Generalization of rough sets using modal logic. Intell Autom Soft Comput 2:103–120

    Article  Google Scholar 

  14. Yao YY (1998) Constructive and algebraic methods of the theory of rough sets. Inform Sci 109:21–47

    Article  MathSciNet  MATH  Google Scholar 

  15. Polkowski L, Skowron A (1996) Rough mereology: a new paradigm for approximate reasoning. Int J Approx Reason 15:333–365

    Article  MathSciNet  MATH  Google Scholar 

  16. Skowron A, Stepaniuk J (1999) Information granules in distributed environment. In International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing. (pp. 357–365). Springer, Berlin, Heidelberg.

  17. Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A, Lin CT (2017) A review of clustering techniques and developments. Neurocomputing 267:664–681

    Article  Google Scholar 

  18. Peters G, Lampart M, Weber R (2008) Evolutionary rough k-medoid clustering. In: Transactions on rough sets VIII. Springer, Berlin, pp 289–306

    Chapter  MATH  Google Scholar 

  19. Suseendran G, Manivannan M (2015) Lung cancer image segmentation using rough set theory. Indian J Med Healthcare 4:6

    Google Scholar 

  20. Ortiz Toro CA, Gonzalo Martín C, Garcia Pedrero A, Ruiz M (2015) Superpixel-based roughness measure for multispectral satellite image segmentation. Remote Sens 7(11):14620–14645

    Article  Google Scholar 

  21. Maji P, Roy S (2015) Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation. PLoS One, 10(4):e0123677.

  22. Liu Z, Song YQ, Tang Z (2015) Noised image segmentation based on rough set and orthogonal polynomial density model. J Electron Imaging 24(2):023010

    Article  Google Scholar 

  23. Maji P, Roy S (2015) Rough-fuzzy clustering and multiresolution image analysis for text-graphics segmentation. Appl Soft Comput 30:705–721

    Article  Google Scholar 

  24. Dubey YK, Mushrif MM (2015) Intuitionistic fuzzy roughness measure for segmentation of brain MR images. In 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR) (pp. 1–6). IEEE

  25. Banerjee A, Maji P (2015) Rough Sets for Finite Mixture Model Based HEp-2 Cell Segmentation. In International Conference on Rough Sets and Knowledge Technology (pp. 459–469). Springer, Cham

  26. Banerjee A, Maji P (2016) Rough-probabilistic clustering and hidden Markov random field model for segmentation of HEp-2 cell and brain MR images. Appl Soft Comput 46:558–576

    Article  Google Scholar 

  27. Roy S, Maji P (2016) A modified rough-fuzzy clustering algorithm with spatial information for HEp-2 cell image segmentation. In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 383–388). IEEE

  28. Li Y, Zhang G, Zhang H (2016) Image segmentation based on the fuzzy C-means clustering and rough sets. In 2016 2nd IEEE International Conference on Computer and Communications (ICCC) (pp. 751–754). IEEE

  29. Sarkar JP, Saha I, Maulik U (2016) Rough possibilistic type-2 fuzzy C-Means clustering for MR brain image segmentation. Appl Soft Comput 46:527–536

    Article  Google Scholar 

  30. Dubey YK, Mushrif MM, Mitra K (2016) Segmentation of brain MR images using rough set based intuitionistic fuzzy clustering. Biocybernetics Biomed Eng 36(2):413–426

    Article  Google Scholar 

  31. Zhang Y, Ye S, Ding W (2017) Based on rough set and fuzzy clustering of MRI brain segmentation. Int J Biomath 10(02):1750026

    Article  MathSciNet  MATH  Google Scholar 

  32. Lim KY, Mandava R (2017) Segmenting object with ambiguous boundary using information theoretic rough sets. AEU-Int J Electron Commun 77:50–56

    Article  Google Scholar 

  33. Shi J, Lei Y, Wu J, Paul A, Kim M, Jeon G (2017) Uncertain clustering algorithms based on rough and fuzzy sets for real-time image segmentation. J Real-Time Image Proc 13(3):645–663

    Article  Google Scholar 

  34. Roy S, Maji P (2017) Rough-fuzzy segmentation of HEp-2 cell indirect immunofluorescence images. IJDMB 17(4):311–340

    Article  Google Scholar 

  35. Halder A, Guha S (2017) Rough kernelized fuzzy c-means based medical image segmentation. In International Conference on Computational Intelligence, Communications, and Business Analytics (pp. 466–474). Springer, Singapore

  36. Saha R, Phophalia A, Mitra SK (2016) Brain tumor segmentation from multimodal mr images using rough sets. In International Conference on Computer Vision, Graphics, and Image processing (pp. 133–144). Springer, Cham

  37. Ji Z, Huang Y, Xia Y, Zheng Y (2017) A robust modified Gaussian mixture model with rough set for image segmentation. Neurocomputing 266:550–565

    Article  Google Scholar 

  38. Ji Z, Huang Y, Sun Q, Cao G, Zheng Y (2017) A rough set bounded spatially constrained asymmetric Gaussian mixture model for image segmentation. PloS One 12(1):e0168449.

  39. Namburu A, Samay K, Edara SR (2017) Soft fuzzy rough set-based MR brain image segmentation. Appl Soft Comput 54:456–466

    Article  Google Scholar 

  40. Namburu A, Samayamantula SK, Edara SR (2017) Generalised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentation. IET Image Proc 11(9):777–785

    Article  Google Scholar 

  41. Bal A, Banerjee M, Chakrabarti A, Sharma P (2018) MRI brain tumor segmentation and analysis using rough-fuzzy C-Means and shape based properties. J King Saud Univ-Comput Inf Sci

  42. Anithadevi D, Perumal K (2018) Rough set and multi-thresholds based Seeded Region Growing Algorithm for image segmentation. Artificial intelligence and evolutionary computations in engineering systems. Springer, Singapore, pp 369–379

    Chapter  Google Scholar 

  43. Nath K, Roy S (2019) Soft clustering for segmenting touching characters in printed scripts. Microelectronics, electromagnetics and telecommunications. Springer, Singapore, pp 289–297

    Chapter  Google Scholar 

  44. Roy S, Maji P (2020) Medical image segmentation by partitioning spatially constrained fuzzy approximation spaces. IEEE Trans Fuzzy Syst 28(5):965–977

    Article  Google Scholar 

  45. Halder A, Talukdar NA (2019) Brain tissue segmentation using improved kernelized rough-fuzzy C-means with spatio-contextual information from MRI. Magn Reson Imag 62:129–151

    Article  Google Scholar 

  46. Dubey Y, Mushrif M, Mitra K (2019) Brain tumor detection and segmentation using multiscale intuitionistic fuzzy roughness in MR images. Biomed Eng: Appl Basis Commun 31(03):1950020

    Google Scholar 

  47. Halder A, Talukdar NA (2019) Robust brain magnetic resonance image segmentation using modified rough-fuzzy C-means with spatial constraints. Appl Soft Comput 85:105758

    Article  Google Scholar 

  48. Huang H, Meng F, Zhou S, Jiang F, Manogaran G (2019) Brain image segmentation based on FCM clustering algorithm and rough set. IEEE Access 7:12386–12396

    Article  Google Scholar 

  49. Roy S, Maji P (2020) Rough segmentation of coherent local intensity for bias induced 3-D MR brain images. Pattern Recogn 97:106997

    Article  Google Scholar 

  50. Srinivasan A, Sadagopan S (2020) Rough fuzzy region based bounded support fuzzy C-means clustering for brain MR image segmentation. J Ambient Intell Humanized Comput 12(3):3775–3788.

  51. Inbarani H, Azar AT (2020) Leukemia image segmentation using a hybrid histogram-based soft covering rough K-Means clustering algorithm. Electronics 9(1):188

    Article  Google Scholar 

  52. Dhanachandra N, Chanu YJ (2020) An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm. Multimedia Tools Appl 79:18839–18858

  53. Dhanachandra N, Chanu YJ, Singh KM (2020) A new hybrid image segmentation approach using clustering and black hole algorithm. Comput Intell. https://doi.org/10.1111/coin.12297

  54. Xiong L, Tang G, Chen YC, Hu YX, Chen RS (2020) Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM. J Supercomput, 1–15. https://doi.org/10.1007/s11227-020-03171-8

  55. Zhang M, Jiang W, Zhou X, Xue Y, Chen S (2019) A hybrid biogeography-based optimization and fuzzy C-means algorithm for image segmentation. Soft Comput 23(6):2033–2046

    Article  Google Scholar 

  56. Dhal KG, Fister I Jr, Das A, Ray S, Das S (2018) Breast histopathology image clustering using cuckoo search algorithm, In Proceedings of the 5th student computer science research conference, pp. 47–54, Slovenia

  57. Dhal KG, Das A, Ray S, Das S (2019) A Clustering based Classification approach based on modified Cuckoo Search Algorithm, Pattern Recognition and Image Analysis 29(3):344–359.

  58. Hung CC, Purnawan H (2008) A hybrid rough k-means algorithm and particle swarm optimization for image classification. In Mexican International Conference on Artificial Intelligence (pp. 585-593). Springer, Berlin, Heidelberg.

  59. Wang C, Luo K (2013) Rough clustering method based on particle swarm optimization algorithm. In: Applied Mechanics and Materials ( Trans Tech Publications Ltd, Vol, 325. pp 1632–1636)

  60. Lingras P (2001) Unsupervised rough set classification using GAs. J Intell Inf Syst 16(3):215–228

    Article  MATH  Google Scholar 

  61. Lingras P (2009) Evolutionary rough K-means clustering. In International Conference on Rough Sets and Knowledge Technology (pp. 68–75). Springer, Berlin, Heidelberg

  62. Mitra S (2004) An evolutionary rough partitive clustering. Pattern Recogn Lett 25(12):1439–1449

    Article  Google Scholar 

  63. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82

    Article  Google Scholar 

  64. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  65. Price KV (1999) An introduction to differential evolution. In: New ideas in optimization. McGraw-Hill Ltd., UK, pp 79–108

    Google Scholar 

  66. Maniezzo ACMDV (1992) Distributed optimization by ant colonies. In Toward a practice of autonomous systems: proceedings of the First European Conference on Artificial Life(p. 134). MIT Press

  67. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on (pp. 39–43). IEEE

  68. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  69. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  70. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Nature and Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on. IEEE, pp 210–214

  71. Yang XS (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010), 65–74

  72. Yang XS (2012) Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240–249). Springer, Berlin, Heidelberg

  73. Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evolut Comput 16:1–18

    Article  Google Scholar 

  74. Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK (2018) Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Syst 26(5):3027–3041

    Article  Google Scholar 

  75. Cong L, Ding S, Wang L, Zhang A, Jia W (2018) Image segmentation algorithm based on superpixel clustering. IET Image Proc 12(11):2030–2035

    Article  Google Scholar 

  76. Lei T, Jia X, Zhang Y, Liu S, Meng H, Nandi AK (2018) Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans Fuzzy Syst 27(9):1753–1766

    Article  Google Scholar 

  77. Fan L, Zhang F, Fan H, Zhang C (2019) Brief review of image denoising techniques. Visual Comput Ind Biomed Art 2(1):7

    Article  Google Scholar 

  78. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice- Hall, Inc, Upper Saddle River

    Google Scholar 

  79. Benesty J, Chen JD, Huang YT (2010) Study of the widely linear wiener filterfor noise reduction. In: Abstracts of IEEE international conference on acoustics, speech and signal processing, IEEE, Dallas, TX, USA, pp 205–208. https://doi.org/10.1109/ICASSP.2010.5496033

  80. Yang RK, Yin L, Gabbouj M, Astola J, Neuvo Y (1995) Optimal weighted median filtering under structural constraints. IEEE Trans Signal Process 43(3):591–604. https://doi.org/10.1109/78.370615

    Article  Google Scholar 

  81. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Abstracts of the sixth international conference on computer vision IEEE, Bombay, India, pp 839–846. https://doi.org/10.1109/ICCV.1998.710815

  82. Jung A (2001) An introduction to a new data analysis tool: independent component analysis. In: Proceedings of workshop GK. IEEE, “nonlinearity”, Regensburg, pp 127–132

  83. Hyvarinen A, Oja E, Hoyer P, Hurri J (1998) Image feature extraction by sparse coding and independent component analysis. In: Abstracts of the 14th international conference on pattern recognition. IEEE, Brisbane, pp. 1268–1273. https://doi.org/10.1109/ICPR.1998.711932

  84. Muresan DD, Parks TW (2003) Adaptive principal components and image denoising. In: Abstracts of 2003 international conference on image processing. IEEE, Barcelona, pp I–101

  85. Zhang L, Dong WS, Zhang D, Shi GM (2010) Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn 43(4):1531–1549. https://doi.org/10.1016/j.patcog.2009.09.023

    Article  MATH  Google Scholar 

  86. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693. https://doi.org/10.1109/34.192463

    Article  MATH  Google Scholar 

  87. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. In: Paper presented at the eleventh annual international conference of the center for nonlinear studies on experimental mathematics: computational issues in nonlinear science. Elsevier North-Holland, Inc, New York, pp 259–268

  88. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: Abstracts of 2005 IEEE computer society conference on computer vision and pattern recognition. IEEE, San Diego, pp 60–65. https://doi.org/10.1109/CVPR.2005.38

  89. Sutour C, Deledalle CA, Aujol JF (2014) Adaptive regularization of the nlmeans: application to image and video denoising. IEEE Trans Image Process 23(8):3506–3521. https://doi.org/10.1109/TIP.2014.2329448

    Article  MathSciNet  MATH  Google Scholar 

  90. Dong WS, Zhang L, Shi GM, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630. https://doi.org/10.1109/TIP.2012.2235847

    Article  MathSciNet  MATH  Google Scholar 

  91. Gu SH, Xie Q, Meng DY, Zuo WM, Feng XC, Zhang L (2017) Weighted nuclear norm minimization and its applications to low level vision. Int J Comput Vis 121(2):183–208. https://doi.org/10.1007/s11263-016-0930-5

    Article  MATH  Google Scholar 

  92. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  93. Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Abstracts of the 25th international conference on machine learning. ACM, Helsinki, pp 1096–1103. https://doi.org/10.1145/1390156.1390294

  94. Xie JY, Xu LL, Chen EH (2012) Image denoising and inpainting with deepneural networks. In: Abstracts of the 25th international conference on neural information processing systems - volume 1. ACM, Lake Tahoe, pp.341–349

  95. Chen YY, Pock T (2017) Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans Pattern Anal Mach Intell 39(6):1256–1272. https://doi.org/10.1109/TPAMI.2016.2596743

    Article  Google Scholar 

  96. Bertalmío M (2018) Denoising of photographic images and video: fundamentals, open challenges and new trends. Springer Publishing Company, Berlin. https://doi.org/10.1007/978-3-319-96029-6

    Book  Google Scholar 

  97. Zhang K, Zuo WM, Chen YJ, Meng DY, Zhang L (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155. https://doi.org/10.1109/TIP.2017.2662206

    Article  MathSciNet  MATH  Google Scholar 

  98. Zhang K, Zuo WM, Zhang L (2018) FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans Image Process 27(9):4608–4622. https://doi.org/10.1109/TIP.2018.2839891

    Article  MathSciNet  Google Scholar 

  99. Dhal KG, Das A, Ray S, Gálvez J, Das S (2020) Histogram Equalization Variants as Optimization Problems: A Review. Arch Comput Methods Eng 28(3): 1471–1496. https://doi.org/10.1007/s11831-020-09425-1

  100. Dhal KG, Ray S, Das A, Das S (2019) A survey on nature-inspired optimization algorithms and their application in image enhancement domain. Arch Comput Methods Eng 26(5):1607–1638

    Article  MathSciNet  Google Scholar 

  101. Gan G, Ma C, Wu J (2007) Data clustering: theory, algorithms, and applications (Vol. 20). Society for Industrial and Applied Mathematics 

  102. Berkhin P (2006) A survey of clustering data mining techniques. In: Grouping multidimensional data. Springer, Berlin, pp 25–71

    Chapter  Google Scholar 

  103. Maulik U, Bandyopadhyay S, Mukhopadhyay A (2011) Multiobjective genetic algorithms for clustering: applications in data mining and bioinformatics. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  104. Xu R, Xu J, Wunsch DC (2012) A comparison study of validity indices on swarm-intelligence-based clustering. IEEE Trans Syst Man Cybernetics Part B (Cybernetics) 42(4):1243–1256

    Article  Google Scholar 

  105. Arbelaitz O, Gurrutxaga I, Muguerza J, PéRez JM, Perona I (2013) An extensive comparative study of cluster validity indices. Pattern Recogn 46(1):243–256

    Article  Google Scholar 

  106. Liu Y, Li Z, Xiong H, Gao X, Wu J (2010) Understanding of internal clustering validation measures. In 2010 IEEE International Conference on Data Mining (pp. 911–916). IEEE

  107. Pakhira MK, Bandyopadhyay S, Maulik U (2004) Validity index for crisp and fuzzy clusters. Pattern Recogn 37(3):487–501

    Article  MATH  Google Scholar 

  108. Mittal H, Saraswat M (2018) An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm. Eng Appl Artif Intell 71:226–235

    Article  Google Scholar 

  109. Saha S, Bandyopadhyay S (2012) Some connectivity based cluster validity indices. Appl Soft Comput 12(5):1555–1565

    Article  Google Scholar 

  110. Pawlak Z (1985) Rough sets and fuzzy sets. Fuzzy Sets Syst 17(1):99–102

    Article  MathSciNet  MATH  Google Scholar 

  111. Fowlkes EB, Mallows CL (1983) A method for comparing two hierarchical clusterings. J Am Stat Assoc 78(383):553–569

    Article  MATH  Google Scholar 

  112. F-Score (2020) In Wikipedia. Retrieved June 05, 2020, from: https://en.wikipedia.org/wiki/F1_score

  113. Mallows_index. In Wikipedia. Retrieved June 05, 2020, from: https://en.wikipedia.org/wiki/Fowlkes%E2 %80 %93Mallows_index

  114. Rand_index. In Wikipedia. Retrieved June 05, 2020, from: https://en.wikipedia.org/wiki/Rand_index

  115. Precision_and_recall. In Wikipedia. Retrieved June 05, 2020, from: https://en.wikipedia.org/wiki/Precision_and_recall

  116. Małyszko D, Stepaniuk J (2010) Adaptive multilevel rough entropy evolutionary thresholding. Inf Sci 180(7):1138–1158

    Article  MathSciNet  MATH  Google Scholar 

  117. Lei B, Fan J (2019) Image thresholding segmentation method based on minimum square rough entropy. Appl Soft Comput 84:105687

    Article  Google Scholar 

  118. Xie CH, Liu YJ, Chang JY (2015) Medical image segmentation using rough set and local polynomial regression. Multimedia Tools Appl 74(6):1885–1914

    Article  Google Scholar 

  119. Pan ZQ, Di LI, Chen XJ (2020) One rough intuitionistic type-2 FCM algorithm for image Ssegmentation. DEStech Transactions on Computer Science and Engineering, (msam). https://doi.org/10.12783/dtcse/msam2020/34260

  120. Ghosh SK, Mitra A, Ghosh A (2021) A novel intuitionistic fuzzy soft set entrenched mammogram segmentation under multigranulation approximation for breast cancer detection in early stages. Expert Syst Appl 169:114329

    Article  Google Scholar 

  121. Dhal KG, Das A, Gálvez J, Ray S, Das S (2020) An Overview on Nature-Inspired Optimization Algorithms and Their Possible Application in Image Processing Domain. Pattern Recog Image Anal 30(4):614–631

    Article  Google Scholar 

  122. Hrosik RC, Tuba E, Dolicanin E, Jovanovic R, Tuba M (2019) Brain image segmentation based on firefly algorithm combined with k-means clustering. Stud Inform Control 28:167–176

    Google Scholar 

  123. Li H, He H, Wen Y (2015) Dynamic particle swarm optimization and K-means clustering algorithm for image segmentation. Optik 126(24):4817–4822

    Article  Google Scholar 

  124. Dhal KG, Das A, Ray S, Gálvez J (2021) Randomly attracted rough firefly algorithm for histogram based fuzzy image clustering. Knowl-Based Syst 216:106814. https://doi.org/10.1016/j.knosys.2021.106814

    Article  Google Scholar 

  125. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems and Computers, 2003 (Vol. 2, pp. 1398–1402). IEEE

Download references

Funding

There is no funding associated with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Gopal Dhal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhal, K.G., Das, A., Ray, S. et al. An Analytical Review on Rough Set Based Image Clustering. Arch Computat Methods Eng 29, 1643–1672 (2022). https://doi.org/10.1007/s11831-021-09629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09629-z

Navigation