Skip to main content
Log in

Determination of Sudan I and Bisphenol A in Tap Water and Food Samples Using Electrochemical Nanosensor

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

For the first time, a highly sensitive and selective electrochemical sensor was fabricated based on a MoWS2 nanoparticles modified screen printed electrode (MoWS2/SPE) for the simultaneous determination of Sudan I and bisphenol A. The MoWS2 nanoparticles synthesized by a hydrothermal method were characterized using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The MoWS2/SPE exhibited excellent electrocatalytic activity towards the oxidations of Sudan I and bisphenol A in a phosphate buffer solution at pH 7.0, and the corresponding electrochemical signals have appeared as two well resolved oxidation peaks with significant peak potential differences of 120 mV. For selective determination, the linear response of Sudan I was in a concentration range of 0.05 to 700.0 μM with a detection limit of 0.01 μM. The proposed sensor has proved to be applicable for the determination of the target analytes in tap water and food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Li, B.L., Luo, J.H., Luo, H.Q., and Li, N.B., A novel conducting poly(p-aminobenzene sulphonic acid)-based electrochemical sensor for sensitive determination of Sudan I and its application for detection in food stuffs, Food Chem., 2015, vol. 173, p. 594. https://doi.org/10.1016/j.foodchem.2014.10.060

    Article  Google Scholar 

  2. Xiao, F., Zhang, N., Gu, H., Qian, M., et al., A monoclonal antibody-based immunosensor for detection of Sudan I using electrochemical impedance spectroscopy, Talanta, 2011, vol. 84, p. 204. https://doi.org/10.1016/j.talanta.2011.01.001

    Article  Google Scholar 

  3. Li, J., Feng, H., Li, J., Feng, Y., et al., Fabrication of gold nanoparticles-decorated reduced graphene oxide as a high performance electrochemical sensing platform for the detection of toxicant Sudan I, Electrochim. Acta, 2015, vol. 167, p. 226. https://doi.org/10.1016/j.electacta.2015.03.201

    Article  Google Scholar 

  4. Mo, Z., Zhang, Y., Zhao, F., Xiao, F., et al., Sensitive voltammetric determination of Sudan I in food samples by using gemini surfactant-ionic liquid-multiwalled carbon nanotube composite film modified glassy carbon electrodes, Food Chem., 2010, vol. 121, p. 233. https://doi.org/10.1016/j.foodchem.2009.11.077

    Article  Google Scholar 

  5. Chen, S., Du, D., Huang, J., Zhang, A., et al., Rational design and application of molecularly imprinted sol-gel polymer for the electrochemically selective and sensitive determination of Sudan I, Talanta, 2011, vol. 84, p. 451. https://doi.org/10.1016/j.talanta.2011.01.047

    Article  Google Scholar 

  6. Yang, D., Zhu, L., and Jiang, X., Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode, J. Electroanal. Chem., 2010, vol. 640, p. 17. https://doi.org/10.1016/j.jelechem.2009.12.022

    Article  Google Scholar 

  7. Yang, D., Zhu, L., Jiang, X., and Guo, L., Sensitive determination of Sudan I at an ordered mesoporous carbon modified glassy carbon electrode, Sens. Actuators, B, 2009, vol. 141, p. 124. https://doi.org/10.1016/j.snb.2009.05.030

    Article  Google Scholar 

  8. Rebane, R., Leito, I., Yurchenko, S., and Herodes, K., A review of analytical techniques for determination of Sudan I–IV dyes in food matrixes, J. Chromatogr. A, 2010, vol. 1217, p. 2747. https://doi.org/10.1016/j.chroma.2010.02.038

    Article  Google Scholar 

  9. Wu, M., Tang, W., Guimaraes, J., Wang, Q., et al., Electrochemical detection of Sudan I using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode, Am. J. Anal. Chem., 2013, vol. 4, p. 1. https://doi.org/10.4236/ajac.2013.46A001

    Article  Google Scholar 

  10. Chailapakul, O., Wonsawat, W., Siangproh, W., Grudpan, K., et al., Analysis of Sudan I, Sudan II, Sudan III, and Sudan IV in food by HPLC with electrochemical detection: comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode, Food Chem., 2008, vol. 109, p. 876. https://doi.org/10.1016/j.foodchem.2008.01.018

    Article  Google Scholar 

  11. Koyun, O., Gorduk, S., Gencten, M., and Sahin, Y., A novel copper(II) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A, New J. Chem., 2019, vol. 43, p. 85. https://doi.org/10.1039/C8NJ03721C

    Article  Google Scholar 

  12. Yu, Z., Luan, Y., Li, H., Wang, W., et al., A disposable electrochemical aptasensor using single-stranded DNA–methylene blue complex as signal-amplification platform for sensitive sensing of bisphenol A, Sens. Actuators, B, 2019, vol. 284, p. 73. https://doi.org/10.1016/j.snb.2018.12.126

    Article  Google Scholar 

  13. Mo, F., Xie, J., Wu, T., Liu, M., et al., A sensitive electrochemical sensor for bisphenol A on the basis of the AuPd incorporated carboxylic multi-walled carbon nanotubes, Food Chem., 2019, vol. 292, p. 253. https://doi.org/10.1016/j.foodchem.2019.04.034

    Article  Google Scholar 

  14. Ali, H., Mukhopadhyay, S., and Jana, N.R., Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite, New J. Chem., 2019, vol. 43, p. 1536. https://doi.org/10.1039/C8NJ05883K

    Article  Google Scholar 

  15. Wu, L., Yan, H., Wang, J., Liu, G., et al., Tyrosinase incorporated with Au–Pt·SiO2 nanospheres for electrochemical detection of bisphenol A, J. Electrochem. Soc., 2019, vol. 166, p. B562.

    Article  Google Scholar 

  16. Sidwaba, U., Ntshongontshi, N., Feleni, U., Wilson, L., et al., Manganese peroxidase-based electro-oxidation of bisphenol A at hydrogellic polyaniline-titania nanocomposite-modified glassy carbon electrode, Electrocatalysis, 2019, vol. 10, p. 323. https://doi.org/10.1007/s12678-019-0510-x

    Article  Google Scholar 

  17. Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sens. Actuators, B, 2014, vol. 195, p. 98. https://doi.org/10.1016/j.snb.2013.12.092

    Article  Google Scholar 

  18. Stradiotto, N.R., Yamanaka, H., and Zanoni, M.V.B., Electrochemical sensors: a powerful tool in analytical chemistry, J. Braz. Chem. Soc., 2003, vol. 14, p. 159. https://doi.org/10.1590/S0103-50532003000200003

    Article  Google Scholar 

  19. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., Selective naked-eye detection of magnesium (II) ions using a coumarin-derived fluorescent probe, Sens. Actuators, B, 2015, vol. 207, p. 216. https://doi.org/10.1016/j.snb.2014.10.044

    Article  Google Scholar 

  20. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., A reversible fluorescence “off-on-off” sensor for sequential detection of aluminum and acetate/fluoride ions, Talanta, 2015, vol. 144, p. 80. https://doi.org/10.1016/j.talanta.2015.05.053

    Article  Google Scholar 

  21. Khalilzadeh, M.A., Tajik, S., Beitollahi, H., and Venditti, R.A., Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4·CNC/Cu): Investigation of catalytic activity for the development of a venlafaxine electrochemical sensor, Ind. Eng. Chem. Res., 2020, vol. 59, p. 4219. https://doi.org/10.1021/acs.iecr.9b06214

    Article  Google Scholar 

  22. Goyal, R.N., Gupta, V.K., and Chatterjee, S., Fullerene-C60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids, Biosens. Bioelectron., 2009, vol. 24, p. 1649. https://doi.org/10.1016/j.bios.2008.08.024

    Article  Google Scholar 

  23. Goyal, R.N., Gupta, V.K., and Chatterjee, S., A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping, Biosens. Bioelectron., 2009, vol. 24, p. 3562. https://doi.org/10.1016/j.bios.2009.05.016

    Article  Google Scholar 

  24. Gupta, V.K., Karimi-Maleh, H., and Sadegh, R., Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor, Int. J. Electrochem. Sci., 2015, vol. 10, p. 303.

    Google Scholar 

  25. Beitollahi, H., Khalilzadeh, M.A., Tajik, S., Safaei, M., et al., Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives, ACS Omega, 2020, vol. 5, p. 2049. https://doi.org/10.1021/acsomega.9b03788

    Article  Google Scholar 

  26. Gupta, V.K., Kumar, S., Singh, R., Singh, L.P., et al., Cadmium(II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor, J. Mol. Liq., 2014, vol. 195, p. 65. https://doi.org/10.1016/j.molliq.2014.02.001

    Article  Google Scholar 

  27. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N'-phenyl-hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848. https://doi.org/10.1021/ac801854j

    Article  Google Scholar 

  28. Srivastava, S.K., Gupta, V.K., Dwivedi, M.K., and Jain, S., Caesium PVC–crown (dibenzo-24-crown-8) based membrane sensor, Anal. Proc. Incl. Anal. Commun., 1995, vol. 32, p. 21. https://doi.org/10.1039/AI9953200021

    Article  Google Scholar 

  29. Elobeid, W.H. and Elbashir, A.A., Development of chemically modified pencil graphite electrode based on benzo-18-crown-6 and multi-walled CNTs for determination of lead in water samples, Prog. Chem. Biochem. Res., 2019, vol. 2, p. 24.

    Article  Google Scholar 

  30. Gupta, V.K., Nayak, A., Agarwal, S., and Singhal, B., Recent advances on potentiometric membrane sensors for pharmaceutical analysis, Comb. Chem. High Throughput Screening, 2011, vol. 14, p. 284. https://doi.org/10.2174/138620711795222437

    Article  Google Scholar 

  31. Beitollahi, H., Tajik, S., Asadi, M.H., and Biparva, P., Application of a modified graphene nanosheet paste electrode for voltammetric determination of methyldopa in urine and pharmaceutical formulation, J. Anal. Sci. Technol., 2014, vol. 5, p. 29. https://doi.org/10.1186/s40543-014-0029-y

    Article  Google Scholar 

  32. Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., et al., Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor, J. Mol. Liq., 2013, vol. 177, p. 114. https://doi.org/10.1016/j.molliq.2012.10.008

    Article  Google Scholar 

  33. Srikanta, S.A., Naik, P.N.P., and Krishanamurthy, G.N., Electrochemical behaviour of 5-methoxy-5,6-bis(3-nitropheyl-4,5-dihydro-1,2,4-triazine-3(2H))-thione in presence of salicylaldehyde on zinc cathode with surface morphology and biological activity, Asian J. Green Chem., 2020, vol. 4, p. 149.

    Google Scholar 

  34. Gupta, V.K., Neutral carrier and organic resin based membranes as sensors for uranyl ions, Anal. Proc. Incl. Anal. Commun., 1995, vol. 32, p. 263. https://doi.org/10.1039/AI9953200263

    Article  Google Scholar 

  35. Motaghi, M.M., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: Application to real sample analysis, Int. J. Electrochem. Sci., 2016, vol. 11, p. 7849.

    Article  Google Scholar 

  36. Gupta, V.K., Ganjali, M.R., Norouzi, P., Khani, H., et al., Electrochemical analysis of some toxic metals by ion-selective electrodes, Crit. Rev. Anal. Chem., 2011, vol. 41, p. 282. https://doi.org/10.1080/10408347.2011.589773

    Article  Google Scholar 

  37. Mahmoudi-Moghaddam, H., Beitollahi, H., Tajik, S., Malakootian, M., et al., Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor, Environ. Monit. Assess., 2014, vol. 186, p. 7431. https://doi.org/10.1007/s10661-014-3938-8

    Article  Google Scholar 

  38. Gupta, V.K., Singh, L.P., Singh, R., Upadhyay, N., et al., A novel copper (II) selective sensor based on dimethyl 4,4'(o-phenylene) bis(3-thioallophanate) in PVC matrix, J. Mol. Liq., 2012, vol. 174, p. 11.

    Article  Google Scholar 

  39. Tajik, S., Taher, M.A., Beitollahi, H., and Torkzadeh-Mahani, M., Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor, Talanta, 2015, vol. 134, p. 60. https://doi.org/10.1016/j.talanta.2014.10.063

    Article  Google Scholar 

  40. Srivastava, S.K., Gupta, V.K., and Jain, S., Determination of lead using a poly (vinyl chloride)-based crown ether membrane, Analyst, 1995, vol. 120, p. 495. https://doi.org/10.1039/AN9952000495

    Article  Google Scholar 

  41. Esfandiari-Baghbamidi, S., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10874.

    Article  Google Scholar 

  42. Jain, A.K., Gupta, V.K., Sahoo, B.B., and Singh, L.P., Copper(II)-selective electrodes based on macrocyclic compounds, Anal. Proc. Incl. Anal. Commun., 1995, vol 32, p. 99. https://doi.org/10.1039/AI9953200099

    Article  Google Scholar 

  43. Tajik, S. and Beitollahi, H., Electrochemical determination of sertraline at screen printed electrode modified with feather like La3+/ZnO nano-flowers and its determination in pharmaceutical and biological samples, Russ. J. Electrochem., 2020, vol. 56, p. 222.

    Article  Google Scholar 

  44. Srivastava, S.K., Gupta, V.K., and Jain, S., PVC-based 2,2,2-cryptand sensor for zinc ions, Anal. Chem., 1996, vol. 68, p. 1272. https://doi.org/10.1021/ac9507000

    Article  Google Scholar 

  45. Taherkhani, A., Jamali, T., Hadadzadeh, H., Karimi-Maleh, H., et al., ZnO nanoparticle-modified ionic liquid-carbon paste electrode for voltammetric determination of folic acid in food and pharmaceutical samples, Ionics, 2014, vol. 20, p. 421.

    Article  Google Scholar 

  46. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., et al., Application of 2-(3,4-dihydroxyphenyl)-1, 3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid, Analyst, 2011, vol. 136, p. 1965. https://doi.org/10.1039/C0AN00823K

    Article  Google Scholar 

  47. Gupta, V.K., Goyal, R.N., and Sharma, R.A., Comparative studies of neodymium(III)-selective PVC membrane sensors, Anal. Chim. Acta, 2009, vol. 647, p. 66. https://doi.org/10.1016/j.aca.2009.05.031

    Article  Google Scholar 

  48. Srivastava, S.K., Gupta, V.K., and Jain, S., A PVC-based benzo-15-crown-5 membrane sensor for cadmium, Electroanalysis, 1996, vol. 8, p. 938. https://doi.org/10.1002/elan.1140081017

    Article  Google Scholar 

  49. Gupta, V.K. and Kumar, P., Cadmium(II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix, Anal. Chim. Acta, 1999, vol. 389, p. 205. https://doi.org/10.1016/S0003-2670(99)00154-3

    Article  Google Scholar 

  50. Ali, T.A., Mohamed, G.G., Aglan, R.F., and Mourad, M.A., A novel screen-printed and carbon paste electrodes for potentiometric determination of uranyl(II) ion in spiked water samples, Russ. J. Electrochem., 2018, vol. 54, p. 201. https://doi.org/10.1134/S1023193517110027

    Article  Google Scholar 

  51. Thivya, P., Ramya, R., and Wilson, J., Poly(3,4-ethylenedioxythiophene)/taurine biocomposite on screen printed electrode: Non-enzymatic cholesterol biosensor, Microchem. J., 2020, vol. 157, art. ID 105037. https://doi.org/10.1016/j.microc.2020.105037

    Article  Google Scholar 

  52. Beitollahi, H., Dourandish, Z., Tajik, S., Ganjali, M.R., et al., Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine, J. Rare Earth, 2018, vol. 36, p. 750. https://doi.org/10.1016/j.jre.2018.01.010

    Article  Google Scholar 

  53. Ganjali, M.R., Dourandish, Z., Beitollahi, H., Tajik, S., et al., Highly sensitive determination of theophylline based on graphene quantum dots modified electrode, Int. J. Electrochem. Sci., 2018, vol. 13, p. 2448.

    Article  Google Scholar 

  54. Gevaerd, A., Banks, C.E., Bergamini, M.F., and Marcolino-Junior, L.H., Nanomodified screen-printed electrode for direct determination of aflatoxin B1 in malted barley samples, Sens. Actuators, B, 2020, vol. 307, p. 127547. https://doi.org/10.1016/j.snb.2019.127547

    Article  Google Scholar 

  55. Karimi-Maleh, H., Tahernejad-Javazmi, F., Atar, N., Yola, M.L., et al., A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug, Ind. Eng. Chem. Res., 2015, vol. 54, p. 3634. https://doi.org/10.1021/ie504438z

    Article  Google Scholar 

  56. Yola, M.L., Gupta, V.K., Eren, T., Sen, A.E., et al., A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin, Electrochim. Acta, 2014, vol. 120, p. 204. https://doi.org/10.1016/j.electacta.2013.12.086

    Article  Google Scholar 

  57. Goyal, R.N., Gupta, V.K., Sangal, A., and Bachheti, N., Voltammetric determination of uric acid at a fullerene-C(60)-modified glassy carbon electrode, Electroanalysis, 2005, vol. 17, p. 2217. https://doi.org/10.1002/elan.200503353

    Article  Google Scholar 

  58. Beitollahi, H. and Garkani-Nejad, F., A carbon paste electrode modified by graphene oxide/Fe3O4SiO2/ionic liquid nanocomposite for voltammetric determination of acetaminophen in the presence of tyrosine, Russ. J. Electrochem., 2019, vol. 55, p. 1162. https://doi.org/10.1134/S1023193519120024

    Article  Google Scholar 

  59. Wei, Z., Yang, Y., Xiao, X., Zhang, W., et al., Fabrication of conducting polymer/noble metal nanocomposite modified electrodes for glucose, ascorbic acid and tyrosine detection and its application to identify the marked ages of rice wines, Sens. Actuators, B, 2018, vol. 255, p. 895. https://doi.org/10.1016/j.snb.2017.08.155

    Article  Google Scholar 

  60. Parlak, O., Incel, A., Uzun, L., Turner, A.P., et al., Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors, Biosens. Bioelectron., 2017, vol. 89, p. 545.

    Article  Google Scholar 

  61. Su, S., Sun, H., Xu, F., Yuwen, L., et al., Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode, Electroanalysis, 2013, vol. 25, p. 2523. https://doi.org/10.1002/elan.201300332

    Article  Google Scholar 

  62. Ela, S.E., Remskar, M., Karaca, G.Y., Oksuz, L., et al., RF plasma modified W5O14 and MoS2 hybrid nanostructures and photovoltaic properties, Part. Sci. Technol., 2019, vol. 37, pp. 616–622. https://doi.org/10.1080/02726351.2017.1414091

    Article  Google Scholar 

  63. Barua, S., Dutta, H.S., Gogoi, S., Devi, R., et al., Nanostructured MoS2-based advanced biosensors: a review, ACS Appl. Nano Mater., 2017, vol. 1, pp. 2–25. https://doi.org/10.1021/acsanm.7b00157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Sarhadi or Somayeh Tajik.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohreh Ghazanfari, Sarhadi, H. & Tajik, S. Determination of Sudan I and Bisphenol A in Tap Water and Food Samples Using Electrochemical Nanosensor. Surf. Engin. Appl.Electrochem. 57, 397–407 (2021). https://doi.org/10.3103/S1068375521030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521030066

Keywords:

Navigation