Skip to main content
Log in

Examination of Carbon Paste Electrode/TiO2 Nanocomposite as Electrochemical Sensor for Detecting Profenofos Pesticide

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study reports the preparation and performance of a smart material—a carbon paste electrode combined with TiO2 semiconductor (CPE/TiO2) as electrochemical sensor for detecting profenofos—a toxic organophosphates group insecticide widely used in agriculture. Such techniques as real samples tests and electrochemical tests were used to investigate the following parameters: a scan rate, an electrode response, a limit of detection (LoD), and repeatability. Based on the obtained results, the best mass composition of TiO2 combined with CPE was found to be in a ratio of 1 : 1 : 5, with an anodic peak current (Ipa) of 150 μA, an anodic peak potential (Epa) of 0.87 V, and an optimal scan rate measurement of 0.5 V s–1. The LoD based on a linearity curve with a value of 4.0 × 10–5 μM was also observed, and a repeatability test against the working electrode was performed until the 30th day, using the Horwitz ratio of 0.16. A good electrochemical performance of the working electrode tested against a real sample showed the specifically detected profenofos with Ipa value of 7.0 × 10–5 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Badawy, M.I., Ghaly, M.Y., and Gad-Allah, T.A., Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater, Desalination, 2006, vol. 194, p. 166.

    Article  Google Scholar 

  2. Burkhard, N. and Guth, J.A., Photolysis of organophosphorus insecticides on soil surfaces, Pestic. Sci., 1979, vol. 10, p. 313.

    Article  Google Scholar 

  3. Martínez-Toledo, M.V., Salmerón, V., and González-López, J., Effect of an organophosphorus insecticide, profenofos, on agricultural soil microflora, Chemosphere, 1992, vol. 24, p. 71.

    Article  Google Scholar 

  4. Nillos, M.G., Rodriguez Fuentes, G., Gan, J., and Schlenk, D., Enantioselective acetylcholinesterase inhibition of the organophosphorous insecticides profenofos, fonofos, and crotoxyphos, Environ. Toxicol. Chem., 2007, vol. 26, p. 1949.

    Article  Google Scholar 

  5. Chu, S., Baker, M.R., Leong, G., Letcher, R.J., et al., Covalent binding of the organophosphate insecticide profenofos to tyrosine on α- and β-tubulin proteins, Chemosphere, 2018, vol. 199, p. 154.

    Article  Google Scholar 

  6. Jones, K.C. and De Voogt, P., Persistent organic pollutants (POPs): State of the science, Environ. Pollut., 1999, vol. 100, p. 209.

    Article  Google Scholar 

  7. Wibowo, D., Sufandy, Y., Irwan, I., Azis, T., et al., Investigation of nickel slag waste as a modifier on graphene-TiO2 microstructure for sensing phenolic compound, J. Mater. Sci.: Mater. Electron., 2020, no. 17, p. 1.

  8. Campbell, R. and Campbell, R.C., Biological Control of Microbial Plant Pathogens, Cambridge: Cambridge Univ. Press, 1989.

    Book  Google Scholar 

  9. Bonmatin, J.-M., Giorio, C., Girolami, V., Goulson, D., et al., Environmental fate and exposure; neonicotinoids and fipronil, Environ. Sci. Pollut. Res., 2015, vol. 22, p. 35.

    Article  Google Scholar 

  10. Musa, M., Buwono, N.R., Iman, M.N., Ayuning, S.W., et al., Pesticides in Kalisat River: Water and sediment assessment, Aquacult., Aquarium, Conserv. Legis., 2019, vol. 12, p. 1806.

    Google Scholar 

  11. Yi, X., Zhang, C., Liu, H., Wu, R., et al., Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China, Environ. Pollut., 2019, vol. 251, p. 892.

    Article  Google Scholar 

  12. Kreuger, J., Pesticides in stream water within an agricultural catchment in southern Sweden, Sci. Total Environ., 1998, vol. 216, p. 227.

    Article  Google Scholar 

  13. Mostafalou, S. and Abdollahi, M., Pesticides: an update of human exposure and toxicity, Arch. Toxicol., 2017, vol. 91, p. 549.

    Article  Google Scholar 

  14. Dawson, A.H., Eddleston, M., Senarathna, L., Mohamed, F., et al., Acute human lethal toxicity of agricultural pesticides: a prospective cohort study, PLoS Med., 2010, vol. 7, p. e1000357.

    Article  Google Scholar 

  15. Ravelo-Péreza, L.M., Hernández-Borges, J., and Rodríguez-Delgado, M.Á., Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices, J. Chromatogr. A, 2008, vol. 1211, p. 33.

    Article  Google Scholar 

  16. Yu, R., Liu, Q., Liu, J., Wang, Q., et al., Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China, Food Control, 2016, vol. 60, p. 353.

    Article  Google Scholar 

  17. Jaipieam, S., Visuthismajarn, P., Sutheravut, P., Siriwong, W., et al., Organophosphate pesticide residues in drinking water from artesian wells and health risk assessment of agricultural communities, Thailand, Hum. Ecol. Risk Assess., 2009, vol. 15, p. 1304.

    Article  Google Scholar 

  18. Payá, P., Anastassiades, M., Mack, D., Sigalova, I., et al., Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection, Anal. Bioanal. Chem., 2007, vol. 389, p. 1697.

    Article  Google Scholar 

  19. Maštovská, K. and Lehotay, S.J., Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues, J. Chromatogr. A, 2004, vol. 1040, p. 259.

    Article  Google Scholar 

  20. Hajšlová, J., Holadová, K., Kocourek, V., Poustka, J., et al., Matrix-induced effects: A critical point in the gas chromatographic analysis of pesticide residues, J. Chromatogr. A, 1998, vol. 800, p. 283.

    Article  Google Scholar 

  21. Garrido Frenich, A., González-Rodríguez, M.J., Arrebola, F.J., and Martínez Vidal, J.L., Potentiality of gas chromatography—triple quadrupole mass spectrometry in vanguard and rearguard methods of pesticide residues in vegetables, Anal. Chem., 2005, vol. 77, p. 4640.

    Article  Google Scholar 

  22. Gotoh, M., Sakata, M., Endo, T., Hayashi, H., et al., Profenofos metabolites in human poisoning, Forensic Sci. Int., 2001, vol. 116, p. 221.

    Article  Google Scholar 

  23. Ismail, S.M.M., Ali, H.M., and Habiba, R.A., GC-ECD and GC-MS analyses of profenofos residues and its biochemical effects in tomatoes and tomato products, J. Agric. Food Chem., 1993, vol. 41, p. 610.

    Article  Google Scholar 

  24. odríguez-Delgado, M.Á., and Hernández-Borges, J., Rapid analysis of triazolopyrimidine sulfoanilide herbicides in waters and soils by high performance liquid chromatography with UV detection using a C18 monolithic column, J. Sep. Sci., 2007, vol. 30, p. 8

    Article  Google Scholar 

  25. Ahmadi, F., Assadi, Y., Hosseini, S.M.R.M., and Rezaee, M., Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector, J. Chromatogr. A, 2006, vol. 1101, p. 307.

    Article  Google Scholar 

  26. Wong, J.W., Hennessy, M.K., Hayward, D.G., Krynitsky, A.J., et al., Analysis of organophosphorus pesticides in dried ground ginseng root by capillary gas chromatography–mass spectrometry and –flame photometric detection, J. Agric. Food Chem., 2007, vol. 55, p. 1117.

    Article  Google Scholar 

  27. Li, C., Zhang, G., Wu, S., and Zhang, Q., Aptamer-based microcantilever-array biosensor for profenofos detection, Anal. Chim. Acta, 2018, vol. 1020, p. 116.

    Article  Google Scholar 

  28. Gao, N., Dong, J., Liu, M., Ning, B., et al., Development of molecularly imprinted polymer films used for detection of profenofos based on a quartz crystal microbalance sensor, Analyst, 2012, vol. 137, p. 1252.

    Article  Google Scholar 

  29. Wang, L., Ye, H., Sang, H.Q., and Wang, D.D., Aptamer-based fluorescence assay for detection of isocarbophos and profenofos, Chin. J. Anal. Chem., 2016, vol. 44, p. 799.

    Article  Google Scholar 

  30. Nurdin, M., Agusu, L., Putra, A.A.M., Mauli- diyah, M., et al., Synthesis and electrochemical performance of graphene-TiO2-carbon paste nanocomposites electrode in phenol detection, J. Phys. Chem. Solids, 2019, vol. 131, p. 104.

    Article  Google Scholar 

  31. Nurdin, M., Maulidiyah, M., Salim, L.O.A., Muzakkar, M.Z., et al., High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode, Microchem. J. 2019, vol. 145, p. 756.

    Article  Google Scholar 

  32. Maulidiyah, Ritonga, H., Faiqoh, C.E., Wibowo, D., et al., Preparation of TiO 2 -PEG thin film on hydrophility performance and photocurrent response, Biosci. Biotechnol. Res. Asia, 2015, vol. 12, p. 1985.

    Google Scholar 

  33. Sá, É.S., da Silva, P.S., Jost, C.L., and Spinelli, A., Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin), Sens. Actuators, B, 2015, vol. 209, p. 423.

    Article  Google Scholar 

  34. Hassaninejad-Darzi, S.K. and Shajie, F. Simultaneous determination of acetaminophen, pramipexole and carbamazepine by ZSM-5 nanozeolite and TiO2 nanoparticles modified carbon paste electrode, Mater. Sci. Eng., C, 2018, vol. 91, p. 64.

    Article  Google Scholar 

  35. Nurdin, M., Zaeni, A., Rammang, E.T., Maulidiyah, M., et al., Reactor design development of chemical oxygen demand flow system and its application, Anal. Bioanal. Electrochem., 2017, vol. 9, p. 480.

    Google Scholar 

  36. Maulidiyah, M., Wibowo, D., Herlin, H., Andarini, M., et al., Plasmon enhanced by Ag-doped S-TiO2/Ti electrode as highly effective photoelectrocatalyst for degradation of methylene blue, Asian J. Chem., 2017, vol. 29, p. 2504.

    Article  Google Scholar 

  37. Beitollahi, H., Garkani-Nejad, F., Tajik, S., and Ganjali, M.R., Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4SiO2 nanocomposite, Iran. J. Pharm. Res., 2019, vol. 18, p. 80.

    Google Scholar 

  38. Arham, Z., Nurdin, M., and Buchari, B., Photo-electrocatalysis performance of La2O3 doped TiO2/Ti electrode in degradation of rhodamine B organic compound, Int. J. ChemTech Res., 2016, vol. 9, p. 113.

    Google Scholar 

  39. Maulidiyah, M., Azis, T., Nurwahidah, A.T., Wibowo, D., et al., Photoelectrocatalyst of Fe co-doped N-TiO2/Ti nanotubes: pesticide degradation of thiamethoxam under UV–visible lights, Environ. Nanotechnol., Monit. Manage., 2017, vol. 8, p. 103.

    Google Scholar 

  40. Maulidiyah, M., Azis, T., Lindayani, L., Wibowo, D., et al., Sol-gel TiO2/carbon paste electrode nanocomposites for electrochemical-assisted sensing of fipronil pesticide, J. Electrochem. Sci. Technol., 2019, vol. 10, p. 1.

    Article  Google Scholar 

  41. Nurdin, M., Prabowo, O.A., Arham, Z., Wibowo, D., et al., Highly sensitive fipronil pesticide detection on ilmenite (FeO·TiO2)-carbon paste composite electrode, Surf. Interfaces, 2019, vol. 16, p. 108.

    Article  Google Scholar 

  42. Nurdin, M., Dali, N., Irwan, I., Maulidiyah, M., et al., Selectivity determination of Pb2+ ion based on TiO2-ionophores BEK6 as carbon paste electrode composite, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 1538.

    Google Scholar 

  43. Umar, A.A., Md Saad, S.K., Ali Umar, M.I., Rahman, M.Y.A., et al., Advances in porous and high-energy (001)-faceted anatase TiO2 nanostructures, Opt. Mater., 2018, vol. 75, p. 390.

    Article  Google Scholar 

  44. Shi, H., Zhao, G., Cao, T., Liu, M., et al., Selective and visible-light-driven profenofos sensing with calixarene receptors on TiO2 nanotube film electrodes, Electrochem. Commun., 2012, vol. 19, p. 111.

    Article  Google Scholar 

  45. Raoof, J.B., Ojani, R., and Baghayeri, M., Sensitive voltammetric determination of captopril using a carbon paste electrode modified with nano-TiO2/ferrocene carboxylic acid, Chin. J. Catal., 2011, vol. 32, p. 1685.

    Article  Google Scholar 

  46. Nurdin, M., Ramadhan, L.O.A.N., Darmawati, D., Maulidiyah, M., et al., Synthesis of Ni, N co-doped TiO2 using microwave-assisted method for sodium lauryl sulfate degradation by photocatalyst, J. Coat. Technol. Res., 2018, vol. 15, p. 395.

    Article  Google Scholar 

  47. Saraswati, A. and Nugraha, I., Sintesis komposit montmorillonit-TiO2 dan aplikasinya untuk pengolahan limbah cair pabrik gula, VI Prosiding Seminar Nasional Kimia dan Pendidikan Kimia, Surakarta, 2014.

  48. Wibowo, D., Maulidiyah, Ruslan, Azis, T., et al., A high-performance electrochemical sensor based on FeTiO3 synthesis coated on conductive substrates, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 465.

    Google Scholar 

  49. Nurdin, M., Muzakkar, M.Z., Maulidiyah, M., Maulidiyah, N., et al., Plasmonic silver–N/TiO2 effect on photoelectrocatalytic oxidation reaction, J. Mater. Environ. Sci., 2016, vol. 7, p. 3334.

    Google Scholar 

  50. Supriyanto, E., Holikin, A., and Suwardiyanto, S., The thermal annealing effect on crystal structure and morphology of titanium dioxide (TiO2) powder, J. Ilmu Dasar, 2014, vol. 15, p. 37.

    Article  Google Scholar 

  51. Wibowo, D., Muzakkar, M.Z., Saad, S.K.M., Mustapa, F., et al., Enhanced visible light-driven photocatalytic degradation supported by Au–TiO2 coral-needle nanoparticles, J. Photochem. Photobiol., A, 2020, vol. 398, p. 112589.

    Article  Google Scholar 

  52. Md Saad, S.K., Ali Umar, A., Ali Umar, M.I., Tomitori, M., et al., Two-dimensional, hierarchical Ag-doped TiO2 nanocatalysts: effect of the metal oxidation state on the photocatalytic properties, ACS Omega, 2018, vol. 3, p. 2579.

    Article  Google Scholar 

  53. Maulidiyah, Wibowo, D., Hikmawati, Salamba, R., et al., Preparation and characterization of activated carbon from coconut shell-doped TiO2 in water medium, Orient. J. Chem., 2015, vol. 31, p. 2337.

    Article  Google Scholar 

  54. Balal, K., Mohammad, H., Bahareh, B., Ali, B., et al., Zeolite nanoparticle modified carbon paste electrode as a biosensor for simultaneous determination of dopamine and tryptophan, J. Chin. Chem. Soc., 2009, vol. 56, p. 789.

    Article  Google Scholar 

  55. Fisher, M.E., The renormalization group in the theory of critical behavior, Rev. Mod. Phys., 1974, vol. 46, p. 597.

    Article  Google Scholar 

  56. Sroysee, W., Chunta, S., Amatatongchai, M., and Lieberzeit, P.A., Molecularly imprinted polymers to detect profenofos and carbofuran selectively with QCM sensors, Phys. Med., 2019, vol. 7, p. 100016.

    Article  Google Scholar 

  57. Liu, T., Xu, M., Yin, H., Ai, S., et al., A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides, Microchim. Acta, 2011, vol. 175, p. 129.

    Article  Google Scholar 

  58. Selvolini, G., Băjan, I., Hosu, O., Cristea, C., et al., DNA-based sensor for the detection of an organophosphorus pesticide: profenofos, Sensors, 2018, vol. 18, p. 2035.

    Article  Google Scholar 

  59. Amatatongchai, M., Sroysee, W., Sodkrathok, P., Kesangam, N., et al., Novel three-dimensional molecularly imprinted polymer-coated carbon nanotubes (3D-CNTs MIP) for selective detection of profenofos in food, Anal. Chim. Acta, 2019, vol. 1076, p. 64.

    Article  Google Scholar 

  60. Kumar, S.A., Tang, C.-F., and Chen, S.-M., Electro-analytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine, Talanta, 2008, vol. 76, p. 997.

    Article  Google Scholar 

  61. Horwitz, W. and Albert, R., The Horwitz ratio (HorRat): A useful index of method performance with respect to precision, J. AOAC Int., 2006, vol. 89, p. 1095.

    Article  Google Scholar 

  62. Belkhamsa, N., Ouattara, L., and Ksibi, M., Voltammetric monitoring of Pb(II) by TiO2 modified carbon paste electrode, J. Electrochem. Soc., 2015, vol. 162, p. B212.

    Article  Google Scholar 

  63. Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., et al., Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion (II), J. Hazard. Mater., 2010, vol. 183, p. 402.

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the Ministry of Research and Technology/National Research and Innovation Agency (KEMRISTEK/BRIN), Republic of Indonesia, for providing the financial support under Grant No. 171/SP2H/AMD/LT/DRPM/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nurdin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thamrin Azis, Maulidiyah, M., Muzakkar, M.Z. et al. Examination of Carbon Paste Electrode/TiO2 Nanocomposite as Electrochemical Sensor for Detecting Profenofos Pesticide. Surf. Engin. Appl.Electrochem. 57, 387–396 (2021). https://doi.org/10.3103/S1068375521030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521030029

Keywords:

Navigation