Skip to main content
Log in

Parameters of Electrostatic Disintegration of Charged Drops Suspended in a Superposition of Electrostatic, Gravitational, and Aerodynamic Fields

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

On the basis of the principle of the minimal energy dissipation rate in nonequilibrium processes, the characteristic sizes, charges, and values of the Rayleigh parameter of progeny droplets formed at realization of electrostatic instability of the parent drop suspended in a thunderstorm cloud under dynamic conditions of a superposition of aerodynamic, electrostatic, and gravitational fields are calculated. It is found that there is a number of differences in comparison with the same characteristics of disintegration of the charged drop unstable in relation to its own charge in a model situation of a motionless drop: in the quantity of the emitted progeny droplets, in their sizes and charges, and in the trend for variation of all parameters with an increase in the serial number of the progeny droplet. It is found that these droplets are initially unstable in relation to their electric charge and that the degree of their instability grows with an increase in the serial number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Lord Rayleigh, F.R.S., Philos. Mag., 1882, vol. 14, pp. 184–186.

    Article  MathSciNet  Google Scholar 

  2. Tonks, L., Phys. Rev., 1935, vol. 48, pp. 562–568.

    Article  Google Scholar 

  3. Frenkel’, Ya.I., Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 348–350.

    Google Scholar 

  4. Hendrics, C.D. and Schneider, J.M., J. Am. Phys., 1963, vol. 1, no. 6, pp. 450–453.

    Article  Google Scholar 

  5. Taylor, G.I., Proc. R. Soc. London, Ser. A, 1964, vol. 280, pp. 383–397.

    Article  Google Scholar 

  6. Dawson, G.A., J. Geophys. Res., 1970, vol. 75, no. 3, pp. 701–705.

    Article  Google Scholar 

  7. Brazier-Smith, P.R., J. R. Meteorol. Soc., 1972, vol. 98, pp. 434–441.

    Article  Google Scholar 

  8. Zeleny, J., Proc. Cambridge Philos. Soc., 1914, vol. 18, pp. 71–83.

    Google Scholar 

  9. Zeleny, J., Phys. Rev., 1917, vol. 10, no. 1, pp. 1–6.

    Article  Google Scholar 

  10. Macky, W.A., Proc. R. Soc. London, Ser. A, 1931, vol. 133, no. 882, pp. 565–587.

    Article  Google Scholar 

  11. Drozin, V.G., J. Colloid Sci., 1955, vol. 10, no. 2, pp. 158–164.

    Article  Google Scholar 

  12. Abbas, M.A. and Latham, J., J. Fluid Mech., 1967, vol. 30, no. 4, pp. 663–670.

    Article  Google Scholar 

  13. Doyle, A., Moffet, D.R., and Vonnegut, B., J. Colloid Sci., 1964, vol. 19, pp. 136–143.

    Article  Google Scholar 

  14. Berg, T.G.O., Trainor, R.J., and Vaughan, U., J. Atmos. Sci., 1970, vol. 27, no. 11, pp. 1173–1181.

    Article  Google Scholar 

  15. Duft, D., Lebbeus, H., and Huber, B.A., Phys. Rev. Lett., 2002, vol. 89, no. 8, pp. 1–4.

    Article  Google Scholar 

  16. Duft, D., Achtzehn, T., Müller, R., et al., Nature, 2003, vol. 421, no. 919, p. 128.

    Article  Google Scholar 

  17. Fong, C.S., Black, N.D., Kiefer, P.A., and Shaw, R.A., Am. J. Phys., 2007, vol. 75, no. 6, pp. 499–503.

    Article  Google Scholar 

  18. Hunter, H.C. and Ray Asit, K., Phys. Chem. Chem. Phys., 2009, vol. 11, no. 29, pp. 6156–6165.

    Article  Google Scholar 

  19. Latham, J. and Myers, V., J. Geophys. Res., 1970, vol. 75, no. 3, pp. 701–705.

    Article  Google Scholar 

  20. Roth, D.S. and Kelly, A.J., IEEE Trans. Ind. Appl., 1983, vol. IA-19, no. 5, pp. 771–775.

    Article  Google Scholar 

  21. Elghazaly, H.M.A. and Castle, G.S.P., IEEE Trans. Ind. Appl., 1987, vol. IA-23, no. 1, pp. 108–113.

    Article  Google Scholar 

  22. Gall’, L.N., Krasnov, N.V., et al., Zh. Tekh. Fiz., 1984, vol. 54, no. 8, pp. 1559–1571.

    Google Scholar 

  23. Grigor’ev, A.I. and Shiryaeva, S.O., J. Aerosol Sci., 1994, vol. 25, no. 6, pp. 1079–1091.

    Article  Google Scholar 

  24. Zharov, A.N., Shiryaeva, S.O., and Grigor’ev, A.I., Tech. Phys., 1999, vol. 44, no. 12, pp. 1420–1424.

    Article  Google Scholar 

  25. Kim, O.V. and Dunn, P.F., Langmuir, 2010, vol. 26, pp. 15807–15813.

    Article  Google Scholar 

  26. Kozhenkov, V.I. and Fuks, N.A., Sov. Chem. Rev., 1976, vol. 45, no. 12, pp. 1179–1184.

    Google Scholar 

  27. Fenn, J.B., Mann, M., Meng, C.K., et al., Science, 1989, vol. 246, no. 4926, pp. 64–71.

    Article  Google Scholar 

  28. Gabovich, M.D., Sov. Phys. Usp., 1983, vol. 26, no. 5, pp. 447–455.

    Article  Google Scholar 

  29. Cloupeau, M. and Prunet Foch, B., J. Aerosol Sci., 1994, vol. 25, no. 6, pp. 1021–1035.

    Article  Google Scholar 

  30. Baily, A.G., Sci. Prog. (Oxford), 1974, vol. 61, pp. 555–581.

    Google Scholar 

  31. Verdoold, S., Agostinho, L.L.F., Yurteri, C.U., and Marijnissen, J.C.M., J. Aerosol Sci., 2014, vol. 67, no. 2014, pp. 87–103.

  32. Park, I., Kim, S.B., Hong, S.W., and Kim, S.S., J. Aerosol. Sci., 2015, vol. 89, pp. 26–30.

    Article  Google Scholar 

  33. Grigor’ev, A.I., Shiryaeva, S.O., and Belavina, E.I., Zh. Tekh. Fiz., 1989, vol. 59, no. 6, pp. 27–34.

    Google Scholar 

  34. Mazin, I.P. and Shmeter, S.M., Oblaka. Stroenie i fizika obrazovaniya (The Clouds: Structure and Physics of Formation), Leningrad: Gidrometeoizdat, 1983.

  35. Landau, L.D. and Lifshitz, E.M., A Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, New York: Pergamon, 1960.

    MATH  Google Scholar 

  36. Bronshtein, I.N. and Semendyaev, K.A., Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov (Handbook on Mathematics for Engineers and Students of Technical Higher Education Institutions), Moscow: Nauka, 1980.

  37. Bazarov, I.P., Gevorkyan, E.V., and Nikolaev, P.N., Neravnovesnaya termodinamika i fizicheskaya kinetika (Non-Equilibrium Thermodynamics and Physical Kinetics), Moscow: Mosk. Gos. Univ., 1989.

  38. Shiryaeva, S.O. and Grigor’ev, A.I., Zh. Tekh. Fiz., 1995, vol. 65, no. 2, pp. 11–21.

    Google Scholar 

  39. Landau, L.D. and Lifshitz, E.M., A Course of Theoretical Physics, Vol. 6: Fluid Mechanics, New York: Pergamon, 1959.

    Google Scholar 

  40. Mazin, I.P., Khrigian, A.Kh., and Imyanitov, I.M., Oblaka i oblachnaya atmosfera (Clouds and Cloudy Atmosphere), Leningrad: Gidrometeoizdat, 1989.

  41. Muchnik, V.M. and Fishman, B.E., Elektrizatsiya grubodispersnykh aerozolei v atmosfere (Electrization of Coarsely Dispersed Aerosols in the Atmosphere), Leningrad: Gidrometeoizdat, 1982.

  42. Grigor’ev, A.I. and Shiryaeva, S.O., Zh. Tekh. Fiz., 1991, vol. 61, no. 3, pp. 19–28.

    Google Scholar 

  43. Grigor’ev, A.I., Zh. Tekh. Fiz., 2001, vol. 71, no. 10, pp. 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Grigor’ev.

Additional information

Translated by T. Shemyakova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, A.I., Shiryaeva, S.O. Parameters of Electrostatic Disintegration of Charged Drops Suspended in a Superposition of Electrostatic, Gravitational, and Aerodynamic Fields. Surf. Engin. Appl.Electrochem. 57, 294–301 (2021). https://doi.org/10.3103/S1068375521030078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521030078

Keywords:

Navigation