Skip to main content
Log in

Low-Cost ITO/n-Si Solar Cells with Increased Sensitivity in UV Spectrum Range

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The results regarding formation of ITO/c-Si junctions interface through the oxidation of the silicon wafer are described. Thus, the formation by this method of the thin layers with a thickness of about ~1 nm is demonstrated, which allows to obtain a photovoltaic conversion efficiency up to 15.3%. By depositing the luminescent layer on the front side of the ITO/c-Si junctions, which is active in the region of the solar cells sensitivity to the action of UV irradiation, their functionality in the range of 300–1100 nm of the solar spectrum is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., et al., Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell, IEEE J. Photovoltaics, 2014, vol. 4, no. 6, p. 1433. https://doi.org/10.1109/jphotov.2014.2352151

    Article  Google Scholar 

  2. Moldovan, A., Feldmann, F., Zimmer, M., Rentsch, J., et al., Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers, Sol. Energy Mater. Sol. Cells, 2015, vol. 142, p. 123. https://doi.org/10.1016/j.solmat.2015.06.048

    Article  Google Scholar 

  3. Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy, 2017, vol. 2, no. 5, p. 17032. https://doi.org/10.1038/nenergy.2017.32

    Article  Google Scholar 

  4. Chandra, S., Doran, J., McCormack, S.J., and Kennedy, M., Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction, Sol. Energy Mater. Sol. Cells, 2012, vol. 98, p. 385. https://doi.org/10.1016/j.solmat.2011.11.030

    Article  Google Scholar 

  5. Ahmed, H., McCormack, S.J., and Doran, J., Plasmonic luminescent down shifting layers for the enhancement of CdTe mini-modules performance, Sol. Energy, 2017, vol. 141, p. 242. https://doi.org/10.1016/j.solener.2016.11.036

    Article  Google Scholar 

  6. Song, X.M., Gao, M., Huang, Z.G., Han, B.C., et al., Interface properties of ITO/n-Si heterojunction solar cell: quantum tunneling, passivation and hole-selective contacts, Sol. Energy, 2018, vol. 173, p. 456. https://doi.org/10.1016/j.solener.2018.07.083

    Article  Google Scholar 

  7. Chen, A. and Zhu, K., Effects of TCO work function on the performance of TCO/n-Si hetero-junction solar cells, Sol. Energy, 2014, vol. 107, p. 195. https://doi.org/10.1016/j.solener.2014.06.005

    Article  Google Scholar 

  8. Du, H.W., Yang, J., Gao, M., Li, Y., et al., The bifunctional tin-doped indium oxide as hole-selective contact and collector in silicon heterojunction solar cell with a stable intermediate oxide layer, Sol. Energy, 2017, vol. 155, p. 963. https://doi.org/10.1016/j.solener.2017.07.042

    Article  Google Scholar 

  9. Balestrieri, M., Pysch, D., Becker, J.-P., Hermle, M., et al., Characterization and optimization of indium tin oxide films for heterojunction solar cells, Sol. Energy Mater. Sol. Cells, 2011, vol. 95, no. 8, p. 2390. https://doi.org/10.1016/j.solmat.2011.04.012

    Article  Google Scholar 

  10. Du, H.W., Yang, J., Li, Y.H., Xu, F., et al., Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering, Appl. Phys. Lett., 2015, vol. 106, no. 9, art. ID 093508. https://doi.org/10.1063/1.4914325

    Article  Google Scholar 

  11. Du, H.W., Yang, J., Li, Y., Gao, M., et al., Low temperature characteristic of ITO/SiOx/c-Si heterojunction solar cell, J. Phys. D: Appl. Phys., 2015, vol. 48, no. 35, p. 355101. https://doi.org/10.1088/0022-3727/48/35/355101

    Article  Google Scholar 

  12. Wan, Y.Z., Gao, M., Li, Y., Du, H.W., et al., Potentiality of delocalized states in indium-involved amorphous silicon oxide, Appl. Phys. Lett., 2017, vol., 110, no. 21, art. ID 213902. https://doi.org/10.1063/1.4983775

    Article  Google Scholar 

  13. Pietruszka, R., Schifano, R., Krajewski, T.A., Witkowski, B.S., et al., Improved efficiency of n-ZnO/p-Si based photovoltaic cells by band offset engineering, Sol. Energy Mater. Sol. Cells, 2016, vol. 147, p. 164. https://doi.org/10.1016/j.solmat.2015.12.018

    Article  Google Scholar 

  14. Pietruszka, R., Luka, G., Kopalko, K., Zielony, E., et al., Photovoltaic and photoelectrical response of n-ZnO/p-Si heterostructures with ZnO films grown by an Atomic Layer Deposition method, Mater. Sci. Semicond. Process., 2014, vol. 25, p. 190. https://doi.org/10.1016/j.mssp.2013.11.026

    Article  Google Scholar 

  15. Knutsen, K.E., Schifano, R., Marstein, E.S., Svensson, B.G., et al., Prediction of high efficiency ZnMgO/Si solar cells suppressing carrier recombination by conduction band engineering, Phys. Status Solidi A, 2012, vol. 210, no. 3, p. 585. https://doi.org/10.1002/pssa.201228527

    Article  Google Scholar 

  16. Gerling, L.G., Mahato, S., Morales-Vilches, A., Masmitja, G., et al., Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells, Sol. Energy Mater. Sol. Cells, 2016, vol. 145, p. 109. https://doi.org/10.1016/j.solmat.2015.08.028

    Article  Google Scholar 

  17. Untila, G.G., Kost, T.N., and Chebotareva, A.B., ITO/SiO/n-Si heterojunction solar cell with bifacial 16.6%/14.6% front/rear efficiency produced by ultrasonic spray pyrolysis: Effect of conditions of SiO growth by wet-chemical oxidation, Sol. Energy, 2020, vol. 204, p. 395. https://doi.org/10.1016/j.solener.2020.04.076

    Article  Google Scholar 

  18. Schein, F.-L., von Wenckstern, H., and Grundmann, M., Transparent p-CuI/n-ZnO heterojunction diodes, Appl. Phys. Lett., 2013, vol. 102, no. 9, p. 092109. https://doi.org/10.1063/1.4794532

    Article  Google Scholar 

  19. Grundmann, M., Schein, F.-L., Lorenz, M., Bontgen, T., et al., Cuprous iodide: A p-type transparent semiconductor, history, and novel applications, Phys. Status Solidi A, 2013, vol. 210, p. 1671. https://doi.org/10.1002/pssa.201329349

    Article  Google Scholar 

  20. Karsthof, R., Räcke, P., von Wenckstern, H., and Grundmann, M., Semi-transparent NiO/ZnO UV photovoltaic cells, Phys. Status Solidi A, 2015, vol. 213, no. 1, p. 30. https://doi.org/10.1002/pssa.201532625

    Article  Google Scholar 

  21. Lee, C.-T., Chen, C.-C., and Lee, H.-Y. Three dimensional-stacked complementary thin-film transistors using n-type Al:ZnO and p-type NiO thin-film transistors, Sci. Rep., 2018, vol. 8, no. 1, art. ID 3968. https://doi.org/10.1038/s41598-018-22430-6

    Article  Google Scholar 

  22. Cui, G., Gao, L., Yao, B., Wang, S., et al., Electrochemistry of CuO/In2O3 p–n heterojunction nano/microstructure array with sensitivity to H2 at and below room-temperature, Electrochem. Commun., 2013, vol. 30, p. 42. https://doi.org/10.1016/j.elecom.2013.02.003

    Article  Google Scholar 

  23. Hoppe, M., Ababii, N., Postica, V., Lupan, O., et al., (CuO–Cu2O)/ZnO:Al heterojunctions for volatile organic compound detection, Sens. Actuators, B, 2018, vol. 255, p. 1362. https://doi.org/10.1016/j.snb.2017.08.135

    Article  Google Scholar 

  24. Li, S., Pan, J., Li, H., Liu, Y., et al., The transparent SnO/ZnO quantum dots/SnO2 p-n junction towards the enhancement of photovoltaic conversion, Chem. Eng. J., 2019, vol. 366, p. 305. https://doi.org/10.1016/j.cej.2019.02.062

    Article  Google Scholar 

  25. Simashkevich, A., Serban, D., Bruc, L., Curmei, N., et al., Indium tin oxide thin films prepared by vapor phase pyrolysis for efficient silicon based solar cells, Thin Solid Films, 2016, vol. 610, p. 35. https://doi.org/10.1016/j.tsf.2016.04.047

    Article  Google Scholar 

  26. Leng, J., Wang, Z., Wang, J., Wu, H.-H., et al., Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion, Chem. Soc. Rev., 2019, vol. 48, no. 11, p. 3015. https://doi.org/10.1039/c8cs00904

    Article  Google Scholar 

  27. Weber, W.H. and Lambe, J., Luminescent greenhouse collector for solar radiation, Appl. Opt., 1976, vol. 15, no. 10, p. 2299. https://doi.org/10.1364/ao.15.002299

    Article  Google Scholar 

  28. Goetzberger, A. and Greube, W., Solar energy conversion with fluorescent collectors, Appl. Phys., 1977, vol. 14, no. 2, p. 123. https://doi.org/10.1007/bf00883080

    Article  Google Scholar 

  29. Gallagher, S.J., Rowan, B.C., Doran, J., and Norton, B., Quantum dot solar concentrator: Device optimization using spectroscopic techniques, Sol. Energy, 2007, vol 81, no. 4, p. 540. https://doi.org/10.1016/j.solener.2006.07.006

    Article  Google Scholar 

  30. Griffini, G., Bella, F., Nisic, F., Dragonetti, C., et al., Multifunctional luminescent down-shifting fluoropolymer coatings: a straightforward strategy to improve the UV-light harvesting ability and long-term outdoor stability of organic dye-sensitized solar cells, Adv. Energy Mater., 2014, vol. 5, no. 3, p. 1401312. https://doi.org/10.1002/aenm.201401312

    Article  Google Scholar 

  31. Bella, F., Griffini, G., Gerosa, M., Turri, S., et al., Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings, J. Power Sources, 2015, vol. 283, p. 195. https://doi.org/10.1016/j.jpowsour.2015.02.105

    Article  Google Scholar 

  32. Norton, B., Eames, P.C., Mallick, T.K., Huang, M.J., et al., Enhancing the performance of building integrated photovoltaics, Sol. Energy, 2011, vol. 85, no. 8, p. 1629. https://doi.org/10.1016/j.solener.2009.10.004

    Article  Google Scholar 

  33. Miluski, P., Dorosz, D., Kochanowicz, M., Zmojda, J., et al., The xanthene dyes doped PMMA microspheres for optical sensor applications, Proc. SPIE, 2015, vol. 9816, art. ID 981607. https://doi.org/10.1117/12.2228364

  34. Li, Z., Zhao, X., Huang, C., and Gong, X., Recent advances in green fabrication of luminescent solar concentrators using nontoxic quantum dots as fluorophores, J. Mater. Chem. C, 2019, vol. 7, no. 40, p. 12373. https://doi.org/10.1039/C9TC03520F

    Article  Google Scholar 

  35. Chandra, S., Rafiee, M., Doran, J., and Mc Cormack, S.J., Absorption coefficient dependent non-linear properties of thin film luminescent solar concentrators, Sol. Energy Mater. Sol. Cells, 2018, vol. 182, p. 331. https://doi.org/10.1016/j.solmat.2018.04.004

    Article  Google Scholar 

  36. Dey, C., Molla, A.R., Goswami, M., Kothiyal, G.P., et al., Synthesis and optical properties of multifunctional CdS nanostructured dielectric nanocomposites, J. Opt. Soc. Am., B, 2014, vol. 31, no. 8, p. 1761. https://doi.org/10.1364/josab.31.001761

    Article  Google Scholar 

  37. Postnova, I., Voznesenskiy, S., Sergeev, A., Galkina, A., et al., Photonic materials prepared through the entrapment of quantum dots into silica, Colloid Surf., A, 2018, vol. 536, p. 3. https://doi.org/10.1016/j.colsurfa.2017.09.020

  38. Kennedy, M., Ahmed, H., Doran, J., Norton, B., et al., Large stokes shift downshifting Eu(III) films as efficiency enhancing UV blocking layers for dye sensitized solar cells, Phys. Status Solidi A, 2014, vol. 212, no. 1, p. 203. https://doi.org/10.1002/pssa.201431683

    Article  Google Scholar 

  39. Chander, N., Sardana, S.K., Parashar, P.K., Khan, A.F., et al., Improving the short-wavelength spectral response of silicon solar cells by spray deposition of YVO4:Eu3+ downshifting phosphor nanoparticles, IEEE J. Photovoltaic, 2015, vol. 5, no. 5, p. 1373. https://doi.org/10.1109/jphotov.2015.2438633

    Article  Google Scholar 

  40. Ahmed, H., Doran, J., and McCormack, S.J., Increased short-circuit current density and external quantum efficiency of silicon and dye sensitized solar cells through plasmonic luminescent down-shifting layers, Sol. Energy, 2016, vol. 126, p. 146. https://doi.org/10.1016/j.solener.2016.01.003

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of SINTEF Materials and Chemistry A. Ulyashin and A. Thogersen for the measurements of the interfaces of the investigated structures using high-resolution transmission electron microscopy.

Funding

This research was funded by the National Agency for Research and Development of the Republic of Moldova and the State Committee for Science and Technology of the Republic of Belarus, Project no. 19.80013.58.07.07A/BL and by the National Agency for Research and Development of the Republic of Moldova under State Program Project no. 20.80009.5007.03.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Shevchenko, M. Caraman or D. Serban.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simashkevich, A., Shevchenko, G., Bokshyts, Y. et al. Low-Cost ITO/n-Si Solar Cells with Increased Sensitivity in UV Spectrum Range. Surf. Engin. Appl.Electrochem. 57, 315–322 (2021). https://doi.org/10.3103/S1068375521030133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521030133

Keywords:

Navigation