Skip to main content
Log in

Computational and theoretical aspects of Romanovski-Bessel polynomials and their applications in spectral approximations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Our concern in this paper is with the essential properties of a finite class of orthogonal polynomials with respect to a weight function related to the probability density function of the inverse gamma distribution over the positive real line. We present some basic properties of the Romanovski-Bessel polynomials, the Romanovski-Bessel-Gauss-type quadrature formulae and the associated interpolation, discrete transforms, spectral differentiation and integration techniques in the physical and frequency spaces, and basic approximation results for the weighted projection operator in the nonuniformly weighted Sobolev space. We discuss the relationship between such kinds of finite orthogonal polynomials and other classes of finite and infinite orthogonal polynomials. Moreover, we propose adaptive spectral tau and collocation methods based on Romanovski-Bessel polynomial basis for solving linear and nonlinear high-order differential equations, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abo-Gabal, H., Zaky, M. A., Hafez, R. M., Doha, E. H.: On Romanovski–Jacobi polynomials and their related approximation results. Numer. Methods Partial Differ. Equ. 36(6), 1982–2017 (2020)

    Article  MathSciNet  Google Scholar 

  2. Adjerid, S., Temimi, H.: A discontinuous Galerkin method for higher-order ordinary differential equations. Comput. Methods Appl. Mech. Eng. 197 (1–4), 202–218 (2007)

    Article  MathSciNet  Google Scholar 

  3. Barrio, R., Serrano, S.: High-order recurrences satisfied by classical orthogonal polynomials. Appl. Math. Lett. 17(6), 667–670 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bhrawy, A. H., Zaky, M. A.: A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  5. Dehghan, M., Masjed-Jamei, M., Eslahchi, M. R.: On numerical improvement of closed Newton–Cotes quadrature rules. Appl. Math. Comput. 165 (2), 251–260 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Dehghan, M., Masjed-Jamei, M., Eslahchi, M. R.: On numerical improvement of the second kind of Gauss–Chebyshev quadrature rules. Appl. Math. Comput. 168(1), 431–446 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Masjed-Jamei, M., Eslahchi, M. R.: The semi-open Newton–Cotes quadrature rule and its numerical improvement. Appl. Math. Comput. 171(2), 1129–1140 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Doha, E. H.: The first and second kind chebyshev coefficients of the moments for the general order derivative on an infinitely differentiable function. Int. J. Comput. Math. 51(1-2), 21–35 (1994)

    Article  Google Scholar 

  9. Doha, E. H.: On the coefficients of differentiated expansions and derivatives of Jacobi polynomials. J. Phys. A Math. Gen. 35(15), 3467 (2002)

    Article  MathSciNet  Google Scholar 

  10. Doha, E. H., Ahmed, H. M., El-Soubhy, S. I.: Explicit formulae for the coefficients of integrated expansions of Laguerre and Hermite polynomials and their integrals. Integr. Transf. Special Funct. 20(7), 491–503 (2009)

    Article  MathSciNet  Google Scholar 

  11. Eslahchi, M. R., Masjed-Jamei, M., Babolian, E.: On numerical improvement of Gauss–Lobatto quadrature rules. Appl. Math. Comput. 164(3), 707–717 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Godoy, E., Ronveaux, A., Zarzo, A., Area, I.: Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: continuous case. J. Comput. Appl. Math. 84(2), 257–275 (1997)

    Article  MathSciNet  Google Scholar 

  13. Golbabai, A., Javidi, M.: Application of homotopy perturbation method for solving eighth-order boundary value problems. Appl. Math. Comput. 191(2), 334–346 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Hashemiparast, S. M., Eslahchi, M. R., Dehghan, M., Masjed-Jamei, M.: The first kind Chebyshev–Newton–Cotes quadrature rules (semi-open type) and its numerical improvement. Appl. Math. Comput. 174(2), 1020–1032 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Hendy, A. S., Zaky, M. A.: Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional schrödinger equations. Appl. Numer. Math. 156, 276–302 (2020)

    Article  MathSciNet  Google Scholar 

  16. Karageorghis, A.: A note on the Chebyshev coefficients of the general order derivative of an infinitely differentiable function. J. Comput. Appl. Math. 21(1), 129–132 (1988)

    Article  MathSciNet  Google Scholar 

  17. Lewanowicz, S.: Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials. Appl. Math. 29, 97–116 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Masjed-Jamei, M.: Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation. Integr. Transf. Special Funct. 13(2), 169–190 (2002)

    Article  MathSciNet  Google Scholar 

  19. Masjed-Jamei, M.: Special functions and generalized Sturm-Liouville problems. Springer Nature (2020)

  20. Masjed-Jamei, M., Eslahchi, M. R., Dehghan, M.: On numerical improvement of Gauss–Radau quadrature rules. Appl. Math. Comput. 168(1), 51–64 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Mestrovic, M.: The modified decomposition method for eighth-order boundary value problems. Appl. Math. Comput. 188(2), 1437–1444 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Nikiforov, A. F., Uvarov, V. B., Suslov, S. K.: Classical Orthogonal Polynomials of a Discrete Variable. In: Classical Orthogonal Polynomials of a Discrete Variable, pp. 18–54. Springer (1991)

  23. Phillips, T. N., Karageorghis, A.: On the coefficients of integrated expansions of ultraspherical polynomials. SIAM J. Numer. Anal. 27(3), 823–830 (1990)

    Article  MathSciNet  Google Scholar 

  24. Quesne, C.: Extending romanovski polynomials in quantum mechanics. J. Math. Phys 54(12), 122,103 (2013)

    Article  MathSciNet  Google Scholar 

  25. Sánchez-Ruiz, J., Dehesa, J. S.: Expansions in series of orthogonal hypergeometric polynomials. J. Comput. Appl. Math. 89(1), 155–170 (1998)

    Article  MathSciNet  Google Scholar 

  26. Shen, J., Tang, T., Wang, L. L.: Spectral methods: algorithms, analysis and applications, vol. 41. Springer Science & Business Media (2011)

  27. Siyyam, H. I.: Laguerre tau methods for solving higher-order ordinary differential equations. J. Comput. Anal. Appl. 3(2), 173–182 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Wang, Y., Zhao, Y. B., Wei, G. W.: A note on the numerical solution of high-order differential equations. J. Comput. Appl. Math. 159(2), 387–398 (2003)

    Article  MathSciNet  Google Scholar 

  29. Zaky, M. A., Hendy, A. S.: Macías-díaz, J.E.: Semi-implicit Galerkin–Legendre Spectral Schemes for Nonlinear Time-Space Fractional Diffusion–Reaction Equations with Smooth and Nonsmooth Solutions. J. Sci. Comput. 82(1), 1–27 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to dedicate this paper to our co-author Howayda Abo-Gabal, who unexpectedly and tragically passed away during the review process. Howayda Abo-Gabal was an energetic early-career master’s student who inspired those around her with her passion for discovery, grasp of complexity, and ability to communicate research. She was also a wonderful friend and colleague who will be missed dearly. The first author (MAZ) wishes to acknowledge the partial support of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant ”Dynamical Analysis and Synchronization of Complex Neural Networks with Its Applications”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Zaky.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaky, M.A., Abo-Gabal, H., Hafez, R.M. et al. Computational and theoretical aspects of Romanovski-Bessel polynomials and their applications in spectral approximations. Numer Algor 89, 1567–1601 (2022). https://doi.org/10.1007/s11075-021-01165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01165-y

Keywords

Mathematics Subject Classification (2010)

Navigation