Skip to main content
Log in

Fast Calculation of Magnetic Coordinates Using Artificial Neural Network in Jupiter’s Magnetosphere

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

In the modeling approach of Jupiter’s radiation belt, the accurate calculation of magnetic coordinates from geographic coordinates is the basis. In the previous studies, the L-shell parameters are always calculated based on the assumption of a dipole field though the accuracy of this method is low. We present a new L-shell calculation method based on the magnetic field lines tracing method and ANN (Artificial Neural Network). In this method, a compromise between calculation accuracy and speed is achieved. This method consists of a classifier and a predictor. The Classifier is a BP (Back Propagation) ANN based on AdaBoost algorithm and the Predictor is a BP ANN optimized by GA (Genetic Algorithm). The Classifier is used to identify whether the coordinates are within Jupiter’s inner magnetosphere. If so, the Predictor is used to calculate the L-shell parameters. The error rates of the Classifier and the Predictor are 3 and 7%, relatively. In an example of the Juno’s orbit, the calculation speed of this ANN-based method is about 3 orders higher than that based on the magnetic field lines tracing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Acuna, M. and Ness, N., The main magnetic field of Jupiter, J. Geophys. Res. Space Phys., 1976, vol. 81, no. 16, pp. 2917–2922.

    Article  ADS  Google Scholar 

  2. Bagenal, F., Adriani, A., Allegrini, F., et al., Magnetospheric science objectives of the Juno mission, Space Sci. Rev., 2017, vol. 213, pp. 219–287.

    Article  ADS  Google Scholar 

  3. Bolton, S.J., Lunine, J., Stevenson, D., et al., The Juno mission, Space Sci. Rev., 2017, vol. 213, pp. 5–37.

    Article  ADS  Google Scholar 

  4. Connerney, J., Acuna, M., Ness, N., et al., Voyager 1 assessment of Jupiter’s planetary magnetic field, J. Geophys. Res. Space Phys., 1982, vol. 87, no. A5, pp. 3623–3627.

    Article  ADS  Google Scholar 

  5. Connerney, J., Acuna, M., Ness, N., et al., New models of Jupiter’s magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 1998, vol. 103, no. A6, pp. 11929–11939.

    Article  ADS  Google Scholar 

  6. Connerney, J., Kotsiaros, S., Oliversen, R., et al., A new model of Jupiter’s magnetic field from Juno’s first nine orbits, Geophys. Res. Lett., 2016, vol. 45, pp. 2590–2596.

    Article  ADS  Google Scholar 

  7. Ding, S., Su, C., and Yu, J., An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev., 2011, vol. 36, pp. 153–162.

    Article  Google Scholar 

  8. Evans, R. and Brinza, D., Grid2: A program for rapid estimation of the Jovian radiation environment, JPL Publication 14-8, 2014.

  9. Freund, Y. and Schapire, R.E., A decision-theoretical generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 1997, vol. 55, no. 1, pp. 119–139.

    Article  Google Scholar 

  10. Garrett, H., Levin, S., and Bolton, S., A revised model of Jupiter’s inner electron belts: updating the Divine radiation model, Geophys. Res. Lett., 2005, vol. 32, no. L04104, pp. 1–5.

    Article  Google Scholar 

  11. Jun, I. and Garrett, H.B., Comparison of high-energy trapped particle environments at the Earth and Jupiter, Radiat. Protection Dosimetry, 2005, vol. 116, pp. 50–54.

    Article  Google Scholar 

  12. Khurana, K.K., Euler potential models of Jupiter’s magnetospheric field, J. Geophys. Res., 1997, vol. 102, no. A6, pp. 11295–11306.

    Article  ADS  Google Scholar 

  13. Khurana, K.K. and Schwarzl, H.K., Global structure of Jupiter’s magnetospheric current sheet, J. Geophys. Res., 2005, vol. 110, no. A07227, pp. 1–12.

    Google Scholar 

  14. McIlwain, C.E., Magnetic coordinates, Space Sci. Rev., 1966, vol. 5, pp. 585–598.

    Article  ADS  Google Scholar 

  15. Moore, K., Yadav, R., Kulowski, L., et al., A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field, Nature, 2018, vol. 561, pp. 76–78.

    Article  ADS  Google Scholar 

  16. Sicard-Piet, A., Bourdarie, S., and Krupp, N., JOSE: A new Jovian specification environment model, IEEE Trans. Nucl. Sci., 2011, vol. 58, no. 3, pp. 923–931.

    Article  ADS  Google Scholar 

  17. Soria-Santacruz, M., Garrett, H.B., Evans, R.W., et al., An empirical model of the high-energy electron environment at Jupiter, J. Geophys. Res., Space Phys., 2016, vol. 121, no. 10, pp. 9732–9743.

    Article  ADS  Google Scholar 

  18. Seidelmann, P. Divine, N., et al., Evaluation of Jupiter longitudes in System III (1965), Geophys. Res. Lett., 1977, vol. 4, no. 2, pp. 65–68.

    Article  ADS  Google Scholar 

  19. Tarkhov, D. and Vasilyev, A., Semi-Empirical Neural Network Modeling and Digital Twins Development, Cambridge, MA: Elsevier Academic Press, 2019.

    Google Scholar 

  20. Wang, J., Zhang, Q., Zheng, Y., et al., TID and internal charging evaluation for Jupiter orbiting mission, IEEE Trans. Nucl. Sci., 2019a, vol. 66, no. 2, pp. 557–566.

    Article  ADS  Google Scholar 

  21. Wang, J., Ma, J., Qiu, J., et al., Optimization design of radiation vault in Jupiter orbiting mission, IEEE Trans. Nucl. Sci., 2019b, vol. 66, no. 10, pp. 2179–2187.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Planetary Data System (PDS) of NASA for providing the data of Juno spacecraft. The authors would also like to thank the NASA Goddard space flight center for providing the JRM09 model. This work was supported by the National Natural Science Foundation of China under Contracts 11675013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-zhao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Jz., Ma, Jn., Jia, Xy. et al. Fast Calculation of Magnetic Coordinates Using Artificial Neural Network in Jupiter’s Magnetosphere. Sol Syst Res 55, 218–226 (2021). https://doi.org/10.1134/S0038094621030072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094621030072

Keywords:

Navigation