Skip to main content
Log in

Detecting shock arrival in expansion tubes and shock tunnels using high-frequency photodiodes

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In expansion tube and shock tunnel facilities, freestream properties are generally inferred from the measurement of shock speeds using wall-mounted instrumentation. By measuring the shock arrival time at known locations along the facility wall, their spacing can be used to calculate the shock speed. These shock arrival measurements are generally taken using high-frequency pressure transducers. For operation at low pressures and shock speeds in excess of 10 km/s, the transducer rise time and its small voltage response to the passing shock wave can become the largest source of uncertainty in the found shock arrival time. In these situations, shock arrival can also be found optically by measuring the radiative emission of the passing shock wave using photomultiplier tubes or photodiodes, which can have rise times of much lower than a microsecond and potentially a larger voltage response to the passing shock wave. This paper presents a photodiode system that has been used to optically measure shock arrival in the X2 hypervelocity expansion tube at the University of Queensland. Experimental results show that for challenging low-density, high shock speed conditions, the photodiode system is able to measure shock arrival with a much larger signal-to-noise ratio than a comparable pressure transducer while operating with a similar or higher-frequency response. This behaviour makes the photodiode system an ideal sensor for detecting shock arrival in these situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharma, S.P., Park, C.: Operating characteristics of a 60- and 10-cm electric arc-driven shock tube. Part II. The driven section. J. Thermophys. Heat Transf. 4(3), 266–272 (1990). https://doi.org/10.2514/3.56243

    Article  Google Scholar 

  2. Morgan, R.: Free piston driven expansion tubes. In: Ben-Dor, G. (ed.) A Handbook of Shock Waves, vol. 1, chap. 4.3, pp. 603–622. Academic Press, Cambridge (2001)

    Chapter  Google Scholar 

  3. Glass, I.I., Hall, J.G.: Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes, Navord Report 1488. U.S. Government Printing Office, Washington, DC (1959)

  4. Haslund, R., Charlson, R.: Localized shock velocity measurement techniques. In: Teel, G. (ed.) Proceedings of the Fourth Shock Tube Symposium, Ballistic Research Laboratories Report No. 1160, pp. 261–274. Aberdeen Proving Ground, MD, U.S.A., April 18–20, 1961 (1962)

  5. Hey, J., Pinson, J., Smith, P.: A radio method of determining the velocity of a shock wave. Nature 179(4571), 1184–1185 (1957). https://doi.org/10.1038/1791184a0

    Article  Google Scholar 

  6. Hey, J., Pinson, J., Smith, P.: Radio observations of hypersonic shock waves. Nature 182(4644), 1220–1221 (1958). https://doi.org/10.1038/1821220a0

    Article  Google Scholar 

  7. Gerardo, J., Hendricks Jr., C., Goldstein, L.: Microwave studies of electrically driven shock waves. Phys. Fluids 6(9), 1222–1236 (1963). https://doi.org/10.1063/1.1706889

    Article  Google Scholar 

  8. Hill, R.: Anomalous shock velocity measurements in argon using microwaves. Phys. Fluids 7(11), 1865–1866 (1964). https://doi.org/10.1063/1.2746788

    Article  Google Scholar 

  9. Aro, T., Walsh, D.: Microwave interference method of measuring shock velocity in a shock tube. J. Sci. Instrum. 43(8), 572 (1966). https://doi.org/10.1088/0950-7671/43/8/328

    Article  Google Scholar 

  10. Blum, R., Dunn, M.: Continuous measurement of shock velocity using a microwave technique. NASA CR-490, NASA, Washington (1966)

  11. Dunn, M.: Application of microwave and optical diagnostic techniques in shock-tube and shock-tunnel flows. AIAA 3rd Aerodynamic Testing Conference, San Francisco, CA, AIAA Paper 1968–394 (1968). https://doi.org/10.2514/6.1968-394

  12. Koch, B., König, M.: Digital measurements of the speed variations of shock waves by means of microwaves. Phys. Fluids 12(5), I–144 (1969). https://doi.org/10.1063/1.1692595

  13. Laney Jr., C.C.: Microwave interferometry technique for obtaining gas interface velocity measurements in an expansion tube facility. NASA-TM-X-72625, NASA Langley Research Center, Hampton (1974)

  14. Dufrene, A.T., Holden, M.S., Ringuette, M.J.: Microwave shock-speed diagnostic development and analysis of expansion tunnel viscous effects. AIAA J. 53(3), 573–587 (2015). https://doi.org/10.2514/1.J053139

    Article  Google Scholar 

  15. Berets, D.J., Greene, E.F., Kistiakowsky, G.: Gaseous detonations. I. Stationary waves in hydrogen–oxygen mixtures. J. Am. Chem. Soc. 72(3), 1080–1086 (1950). https://doi.org/10.1021/ja01159a008

    Article  Google Scholar 

  16. Li, Y.: High-frequency pressure indicators for aerodynamic problems. NACA Technical Note 3042, National Advisory Committee for Aeronautics, Washington (1953)

  17. Knight, H.T.: Piezoelectric detector for low-pressure shock waves. Rev. Sci. Instrum. 29(2), 174–175 (1958). https://doi.org/10.1063/1.1716132

    Article  Google Scholar 

  18. Duff, R.E.: Shock-tube performance at low initial pressure. Phys. Fluids 2(2), 207–216 (1959). https://doi.org/10.1063/1.1705910

    Article  MATH  Google Scholar 

  19. Huppert, L., Kane, G., Bieber, M.: Design of a microminiature pressure transducer. TREC Technical Report 61-73, U.S. Army Transportation Research Command, Fort Eustis, VA, U.S.A. (1961)

  20. PCB Piezotronics, I.: Model 112A22 High Resolution ICP Pressure Probe, 50 psi, 100 mV/psi, 0.218” dia. Installation and Operating Manual. PCB Piezotronics, Inc., Depew, N.Y., U.S.A. (2013)

  21. Hooker, W.J.: Testing time and contact-zone phenomena in shock-tube flows. Phys. Fluids 4(12), 1451–1463 (1961). https://doi.org/10.1063/1.1706243

    Article  MATH  Google Scholar 

  22. Fox, J., McLaren, T., Hobson, R.: Test time and particle paths in low-pressure shock tubes. Phys. Fluids 9(12), 2345–2350 (1966). https://doi.org/10.1063/1.1761624

    Article  Google Scholar 

  23. Leibowitz, L.: Measurement of the structure of an ionizing shock wave in a hydrogen–helium mixture. Phys. Fluids 16, 59–68 (1973). https://doi.org/10.1063/1.1694174

    Article  Google Scholar 

  24. Schultz, D.L., Jones, T.: Heat-transfer measurements in short-duration hypersonic facilities. Technical Report AGARDograp-165, AGARD (1973)

  25. Roshko, A.: On flow duration in low-pressure shock tubes. Phys. Fluids 3(6), 835–842 (1960). https://doi.org/10.1063/1.1706147

    Article  Google Scholar 

  26. James, C., Gildfind, D., Morgan, R., Lewis, S., McIntyre, T.: Experimentally simulating giant planet entry in an expansion tube. J. Spacecr. Rockets 57(4), 656–671 (2020). https://doi.org/10.2514/1.A34457

    Article  Google Scholar 

  27. James, C.: Radiation from Simulated atmospheric entry into the gas giants. PhD Thesis, the University of Queensland, St Lucia, QLD, Australia (2018). https://doi.org/10.14264/uql.2018.697

  28. Gildfind, D., Morgan, R.G., Jacobs, P.: Expansion tubes in Australia. In: Igra, O., Seiler, F. (eds.) Experimental Methods of Shock Wave Research, pp. 399–431. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-319-23745-9_13

  29. Morrison, R.B.: A shock tube investigation of detonative combustion. UMM-97, Willow Run Research Center, University of Michigan, Ann Arbor (1952)

  30. Resler, E., Lin, S.C., Kantrowitz, A.: The production of high temperature gases in shock tubes. J. Appl. Phys. 23(12), 1390–1399 (1952). https://doi.org/10.1063/1.1702080

    Article  Google Scholar 

  31. Knight, H.T., Duff, R.E.: Precision measurement of detonation and strong shock velocity in gases. Rev. Sci. Instrum. 26(3), 257–260 (1955). https://doi.org/10.1063/1.1771269

    Article  Google Scholar 

  32. Lin, S.C., Fyfe, W.I.: Low-density shock tube for chemical kinetics studies. Phys. Fluids 4(2), 238–249 (1961). https://doi.org/10.1063/1.1724434

    Article  Google Scholar 

  33. Dannenberg, R.E., Humphry, D.E.: Microsecond response system for measuring shock arrival by changes in stream electrical impedance in a shock tube. Rev. Sci. Instrum. 39(11), 1692–1696 (1968). https://doi.org/10.1063/1.1683204

    Article  Google Scholar 

  34. Patrick, R.M.: High-speed shock waves in a magnetic annular shock tube. Phys. Fluids 2(6), 589–598 (1959). https://doi.org/10.1063/1.1705959

    Article  Google Scholar 

  35. Camm, J.C., Rose, P.H.: Electric arc-driven shock tube. Phys. Fluids 6(5), 663–678 (1963). https://doi.org/10.1063/1.1706797

    Article  Google Scholar 

  36. Levine, L.S.: Experimental investigations of normal ionizing shock waves. Phys. Fluids 11(7), 1479–1486 (1968). https://doi.org/10.1063/1.1692131

    Article  Google Scholar 

  37. Cruden, B.: Absolute radiation measurements in Earth and Mars entry conditions. NATO RTO Lecture Series RTO-EN-AVT-218 (2014)

  38. Resler Jr., E., Scheibe, M.: Instrument to study relaxation rates behind shock waves. J. Acoust. Soc. Am. 27(5), 932–938 (1955). https://doi.org/10.1121/1.1908082

    Article  Google Scholar 

  39. Kiefer, J.H., Lutz, R.W.: Simple quantitative schlieren technique of high sensitivity for shock tube densitometry. Phys. Fluids 8(7), 1393–1394 (1965). https://doi.org/10.1063/1.1761417

    Article  Google Scholar 

  40. Kiefer, J.H., Lutz, R.W.: Vibrational relaxation of deuterium by a quantitative schlieren method. J. Chem. Phys. 44(2), 658–667 (1966). https://doi.org/10.1063/1.1726741

    Article  Google Scholar 

  41. Kiefer, J., Al-Alami, M., Hajduk, J.: Physical optics of the laser-schlieren shock tube technique. Appl. Opt. 20(2), 221–230 (1981). https://doi.org/10.1364/AO.20.000221

    Article  Google Scholar 

  42. Fujita, K., Sato, S., Abe, T., Ebinuma, Y.: Experimental investigation of air radiation from behind a strong shock wave. J. Thermophys. Heat Transfer 16(1), 77–82 (2002). https://doi.org/10.2514/2.6654

    Article  Google Scholar 

  43. Venable, D.: Positive ion oscilloscope trigger for shocks in low-density gases. Rev. Sci. Instrum. 26(7), 729 (1955). https://doi.org/10.1063/1.1715300

    Article  Google Scholar 

  44. Venable, D., Kaplan, D.E.: Electron beam method of determining density profiles across shock waves in gases at low densities. J. Appl. Phys. 26(5), 639–640 (1955). https://doi.org/10.1063/1.1722058

    Article  Google Scholar 

  45. Ballard, H., Venable, D.: Shock-front-thickness measurements by an electron beam technique. Phys. Fluids 1(3), 225–229 (1958). https://doi.org/10.1063/1.1724346

    Article  Google Scholar 

  46. Knight, H.T., Venable, D.: Apparatus for precision flash radiography of shock and detonation waves in gases. Rev. Sci. Instrum. 29(2), 92–98 (1958). https://doi.org/10.1063/1.1716145

    Article  Google Scholar 

  47. McChesney, M.: Shock tube beta-ray densitometer. J. Sci. Instrum. 38(12), 496 (1961). https://doi.org/10.1088/0950-7671/38/12/320

    Article  Google Scholar 

  48. Gildfind, D.: X2 PCB Mount Assembly Drawing Set, Drawing Number x2-pcbmount1-000. https://espace.library.uq.edu.au/view/UQ:372806 (2015). Accessed 2 April 2021

  49. Sheikh, U.: Re-entry radiation aerothermodynamics in the vacuum ultraviolet. PhD thesis, the University of Queensland, St Lucia, QLD, Australia (2014). https://doi.org/10.14264/uql.2014.305

  50. Thorlabs, Inc.: Step-Index Multimode Fiber Optic Patch Cables: SMA to SMA. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=351 (2021). Accessed 2 April 2021

  51. Tanno, H., Komuro, T., Lillard, R., Olejniczak, J.: Experimental study of high-enthalpy heat flux augmentation in shock tunnels. J. Thermophys. Heat Transfer 29, 858–862 (2015). https://doi.org/10.2514/1.T4478

    Article  Google Scholar 

  52. James, C., Smith, D., McLean, C., Morgan, R., Lewis, S., Toniato, P., Wei, H., McIntyre, T.: Using optically filtered high speed imaging to characterise expansion tube operating conditions. Shock Waves 30(5), 523–544 (2020). https://doi.org/10.1007/s00193-020-00948-x

    Article  Google Scholar 

  53. Thorlabs, I.: Thorlabs PDA36A(-EC) Si Switchable Gain Detector User Guide, Rev E, July 15, 2017. Thorlabs Inc, Newton (2017)

    Google Scholar 

  54. Thorlabs, I.: Thorlabs PDA20CS(-EC) InGaAs Switchable Gain Detector User Guide, Rev H, July 15, 2017. Thorlabs Inc, Newton (2017)

    Google Scholar 

  55. Thorlabs, Inc.: Photodiodes and photoconductors tutorials. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9020 (2021). Accessed 2 April 2021

  56. Robison, A., Applications Engineer, Thorlabs, Inc. (personal communication) (2021)

  57. Thorlabs, Inc.: Terminated fiber adapters. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=69 (2021). Accessed 2 April 2021

  58. Thorlabs, Inc.: BNC terminators. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7312 (2021). Accessed 2 April 2021

  59. Crystran Ltd: Calcium Fluoride (CaF2). https://www.crystran.co.uk/optical-materials/calcium-fluoride-caf2 (2021). Accessed 2 April 2021

  60. James, C., Cullen, T., Wei, H., Lewis, S., Gu, S., Morgan, R., McInytre, T.: Improved test time evaluation in an expansion tube. Exp. Fluids 59(5) (2018). https://doi.org/10.1007/s00348-018-2540-1

  61. Apirana, S., James, C., Lewis, S., Morgan, R., Zander, F.: Studying post-shock relaxation using a mach disk. 11th Asia-Pacific International Symposium on Aerospace Technology, Gold Coast, Australia, December 4–6 (2019)

  62. Liu, Y., James, C., Morgan, R., McIntyre, T.: Using aerothermodynamic similarity to experimentally study nonequilibrium giant planet entry. J. Spacecr. Rockets 57(5), 1008–1020 (2020). https://doi.org/10.2514/1.A34713

    Article  Google Scholar 

  63. Liu, Y., James, C.M., Morgan, R.G., McIntyre, T.J.: Experimental validation of a test gas substitution for simulating non-equilibrium giant planet entry conditions in impulse facilities. Exp. Fluids 61(9), 198 (2020). https://doi.org/10.1007/s00348-020-03032-3

    Article  Google Scholar 

  64. James, C., Gildfind, D., Lewis, S., Morgan, R., Zander, F.: Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties. Shock Waves 28(2), 349–377 (2018). https://doi.org/10.1007/s00193-017-0763-3

    Article  Google Scholar 

  65. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  66. James, C.: Using a simplified canny edge detector to detect shock arrival in expansion tubes and shock tunnels. In: Proceedings of the 32nd International Symposium on Shock Waves, Paper 0031, pp. 651–672. Research Publishing, Singapore, July 15–19 (2019). https://doi.org/10.3850/978-981-11-2730-4_0031-cd

  67. Zander, F., Morgan, R., Sheikh, U., Buttsworth, D., Teakle, P.: Hot-wall reentry testing in hypersonic impulse facilities. AIAA J. 51(2), 476–484 (2013). https://doi.org/10.2514/1.J051867

    Article  Google Scholar 

  68. Mirels, H.: Test time in low-pressure shock tubes. Phys. Fluids 6, 1201–1214 (1963). https://doi.org/10.1063/1.1706887

    Article  MATH  Google Scholar 

  69. Paull, A., Stalker, R.J.: Test flow disturbances in an expansion tube. J. Fluid Mech. 245(1), 493–521 (1992). https://doi.org/10.1017/S0022112092000569

    Article  Google Scholar 

  70. James, C., Gildfind, D., Morgan, R., Lewis, S., McIntyre, T.: Simulating gas giant atmospheric entry using helium and neon test gas substitutions. J. Spacecr. Rockets 56(3), 725–743 (2019). https://doi.org/10.2514/1.A34282

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank: All X2 operators for their support with operating the facility, it would not be possible to keep X2 going without them; all of the X2 experimenters who tolerated any small delays when the authors were cleaning the window between experiments; R.G. Morgan who provided funding to purchase new equipment used for this project; the University of Queensland’s Summer Research Internship program which allowed undergraduate students to develop the physical system; K. Hitchcock, N. Duncan, B.V. Allsop, and the EAIT Faculty Workshop Group for technical support on X2; The Australian Research Council for support and funding; The Queensland Smart State Research Facilities Fund 2005 for support and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. James.

Additional information

Communicated by S. O’Byrne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, C.M., Cox, D., Komonen, A. et al. Detecting shock arrival in expansion tubes and shock tunnels using high-frequency photodiodes. Shock Waves 31, 399–411 (2021). https://doi.org/10.1007/s00193-021-01026-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01026-6

Keywords

Navigation