Skip to main content
Log in

Derivatives of Probability Functions: Unions of Polyhedra and Elliptical Distributions

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In many practical applications models exhibiting chance constraints play a role. Since, in practice one is also typically interesting in numerically solving the underlying optimization problems, an interest naturally arises in understanding analytical properties, such as differentiability, of probability functions. However in order to build nonlinear programming methods, not only knowledge of differentiability, but also explicit formulæ for gradients are important. Unfortunately, differentiability of probability functions cannot be taken for granted. In this paper, motivated by applications from energy management, wherein we face a variety of non-linear transforms of underlying Elliptical distributions, we investigate probability functions acting on decision dependent union of polyhedra. Union of polyhedra naturally occur as soon as one approaches the components of “difference-of-convex” (DC) functions with their respective cutting plane models. In this work, we will establish that the probability functions are locally Lipschitzian and exhibit explicit formulæ for “the” Clarke sub-gradients, under very mild conditions. We also highlight, on a numerical example, that the formulæ can be put to use “in practice”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prékopa, A.: Stochastic programming. Kluwer, Dordrecht (1995)

  2. Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, pp. 267–351. Elsevier, Amsterdam (2003)

  3. Dentcheva, D.: Optimisation models with probabilistic constraints. In: Shapiro, A., Dentcheva, D., Ruszczyński, A. (eds.) Lectures on Stochastic Programming. Modeling and Theory, MPS-SIAM series on optimization, vol. 9, pp. 87–154. SIAM and MPS, Philadelphia (2009)

  4. Henrion, R.: Optimierungsprobleme mit wahrscheinlichkeitsrestriktionen: Modelle, struktur, numerik. Lect. Notes, 1–53 (2016)

  5. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Luedtke, J.: An integer programming and decomposition approach to general chance-constrained mathematical programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 6080, pp. 271–284. Springer (2010)

  7. Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122 (2), 247–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. Math. Program. 146(1-2), 219–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, X., Küçükyavuz, S., Luedtke, J.: Decomposition algorithm for two-stage chance constrained programs. Math. Programm. Ser. B 157(1), 219–243 (2016). https://doi.org/10.1007/s10107-014-0832-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Pagnoncelli, B., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: Theory and applications. J. Optim. Theory Appl 142, 399–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. van Ackooij, W, Frangioni, A., de Oliveira, W.: Inexact stabilized Benders’ decomposition approaches: with application to chance-constrained problems with finite support. Comput. Optim. Appl. 65(3), 637–669 (2016). https://doi.org/10.1007/s10589-016-9851-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132(1-2), 31–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kannan, R., Luedtke, J.: A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Math. Program. Comput., 1–47. https://doi.org/10.1007/s12532-020-00199-y (2020)

  14. n-Ordieres, A.P., Luedtke, J.R., Wächter, A.: Solving chance-constrained problems via a smooth sample-based nonlinear approximation. SIAM J. Optim. 30(3), 2221–2250 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lejeune, M.A.: Pattern-based modeling and solution of probabilistically constrained optimization problems. Oper. Res. 60(6), 1356–1372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lejeune, M., Margot, F.: Solving chance-constrained optimization problems with stochastic quadratic inequalities. Oper. Res. 64(4), 939–957 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dentcheva, D., Prékopa, A., Ruszczyński, A.: Concavity and efficient points for discrete distributions in stochastic programming. Math. Program. 89, 55–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dentcheva, D., Lai, B., Ruszczyński, A.: Dual methods for probabilistic optimization problems. Math. Methods Oper. Res. 60(2), 331–346 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dentcheva, D., Martinez, G.: Augmented lagrangian method for probabilistic optimization. Ann. Oper. Res. 200(1), 109–130 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dentcheva, D., Martinez, G.: Regularization methods for optimization problems with probabilistic constraints. Math. Programm. (Ser. A) 138(1-2), 223–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lejeune, M.A.: Pattern definition of the p-efficiency concept. Ann. Oper. Res. 200, 23–36 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lejeune, M.A., Noyan, N.: Mathematical programming approaches for generating p-efficient points. Eur. J. Oper. Res. 207(2), 590–600 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Ackooij, W, Berge, V., de Oliveira, W., Sagastizábal, C.: Probabilistic optimization via approximate p-efficient points and bundle methods. Comput. Oper. Res. 77, 177–193 (2017). https://doi.org/10.1016/j.cor.2016.08.002

    Article  MathSciNet  MATH  Google Scholar 

  24. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Programm. Ser. A 88, 411–424 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust optimization. Princeton University Press (2009)

  26. Ermoliev, Y.M., Ermolieva, T.Y., Macdonald, G.J., Norkin, V.I.: Stochastic optimization of insurance portfolios for managing exposure to catastrophic risk. Ann. Oper. Res. 99, 207–225 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Automat. Control 51, 742–753 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Campi, M.C., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality. J. Optim. Theory Appl. 148(2), 257–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hong, L.J., Yang, Y., Zhang, L.: Sequential convex approximations to joint chance constrained programed: A monte carlo approach. Oper. Res. 3(59), 617–630 (2011)

    Article  MATH  Google Scholar 

  31. Geletu, A., Hoffmann, A., Klöppel, M., Li, P.: A tractable approximation of non-convex chance constrained optimization with non-gaussian uncertainties. Eng. Optim. 47(4), 495–520 (2015)

    Article  MathSciNet  Google Scholar 

  32. Hu, Z., Hong, L.J., Zhang, L.: A smooth monte carlo approach to joint chance-constrained programs. IIE Trans. 45(7), 716–735 (2013)

    Article  Google Scholar 

  33. Tuy, H.: Convex analysis and global optimization, Nonconvex Optimization and Its Applications, vol. 22. Springer (2016)

  34. Garnier, J., Omrane, A., Rouchdy, Y.: Asymptotic formulas for the derivatives of probability functions and their Monte Carlo estimations. Eur. J. Oper. Res. 198, 848–858 (2009). https://doi.org/10.1016/j.ejor.2008.09.026

    Article  MathSciNet  MATH  Google Scholar 

  35. Kibzun, A.I., Uryas’ev, S.: Differentiability of probability function. Stoch. Anal. Appl. 16, 1101–1128 (1998). https://doi.org/10.1080/07362999808809581

    Article  MathSciNet  MATH  Google Scholar 

  36. Marti, K.: Differentiation of probability functions : The transformation method. Comput. Math. Appl. 30, 361–382 (1995). https://doi.org/10.1016/0898-1221(95)00113-1

    Article  MathSciNet  MATH  Google Scholar 

  37. Pflug, G., Weisshaupt, H.: Probability gradient estimation by set-valued calculus and applications in network design. SIAM J. Optim. 15, 898–914 (2005). https://doi.org/10.1137/S1052623403431639

    Article  MathSciNet  MATH  Google Scholar 

  38. Raik, E.: The differentiability in the parameter of the probability function and optimization of the probability function via the stochastic pseudogradient method (russian). Izvestiya Akad. Nayk Est. SSR, Phis. Math. 24(1), 3–6 (1975)

    MathSciNet  MATH  Google Scholar 

  39. Royset, J.O., Polak, E.: Implementable algorithm for stochastic optimization using sample average approximations. J. Optim. Theory Appl. 122(1), 157–184 (2004). https://doi.org/10.1023/B:JOTA.0000041734.06199.71

    Article  MathSciNet  MATH  Google Scholar 

  40. Royset, J.O., Polak, E.: Extensions of stochastic optimization results to problems with system failure probability functions. J. Optim. Theory Appl. 133(1), 1–18 (2007). https://doi.org/10.1007/s10957-007-9178-0

    Article  MathSciNet  MATH  Google Scholar 

  41. Uryas’ev, S.: Derivatives of probability functions and integrals over sets given by inequalities. J. Comput. Appl. Math. 56(1-2), 197–223 (1994). https://doi.org/10.1016/0377-0427(94)90388-3

    Article  MathSciNet  MATH  Google Scholar 

  42. Uryas’ev, S.: Derivatives of probability functions and some applications. Ann. Oper. Res. 56, 287–311 (1995). https://doi.org/10.1007/BF02031712

    Article  MathSciNet  Google Scholar 

  43. van Ackooij, W, Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM J. Optim. 24(4), 1864–1889 (2014). https://doi.org/10.1137/130922689

    Article  MathSciNet  MATH  Google Scholar 

  44. van Ackooij, W, Henrion, R.: (Sub-) Gradient formulae for probability functions of random inequality systems under Gaussian distribution. SIAM J. Uncertain. Quant. 5(1), 63–87 (2017). https://doi.org/10.1137/16M1061308

    Article  MathSciNet  MATH  Google Scholar 

  45. van Ackooij, W, Aleksovska, I., Zuniga, M.M.: (sub-)differentiability of probability functions with elliptical distributions. Set Valued Var. Anal. 26(4), 887–910 (2018). https://doi.org/10.1007/s11228-017-0454-3

    Article  MathSciNet  MATH  Google Scholar 

  46. van Ackooij, W., Malick, J.: Second-order differentiability of probability functions. Optim. Lett. 11(1), 179–194 (2017). https://doi.org/10.1007/s11590-016-1015-7

    Article  MathSciNet  MATH  Google Scholar 

  47. Hantoute, A., Henrion, R., Pérez-Aros, P.: Subdifferential characterization of continuous probability functions under Gaussian distribution. Math. Program. 174 (1-2), 167–194 (2019). https://doi.org/10.1007/s10107-018-1237-9

    Article  MathSciNet  MATH  Google Scholar 

  48. van Ackooij, W, Pérez-Aros, P.: Generalized differentiation of probability functions acting on an infinite system of constraints. SIAM J. Optim. 29 (3), 2179–2210 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. van Ackooij, W., Henrion, R., Pérez-Aros, P.: Generalized gradients for probabilistic/robust (probust) constraints. Optimization 69(7-8), 1451–1479 (2020). https://doi.org/10.1080/02331934.2019.1576670

    Article  MathSciNet  MATH  Google Scholar 

  50. van Ackooij, W., Pérez-Aros, P.: Gradient formulae for nonlinear probabilistic constraints with non-convex quadratic forms. J. Optim. Theory Appl. 185 (1), 239–269 (2020). https://doi.org/10.1007/s10957-020-01634-9

    Article  MathSciNet  MATH  Google Scholar 

  51. van Ackooij, W., Pérez-Aros, P.: Generalized differentiation of probability functions: parameter dependent sets given by intersections of convex sets and complements of convex sets. Working paper (2021)

  52. Fang, K., Kotz, S., Ng, K.W.: Symmetric multivariate and related distributions, 1st edn. Monographs on Statistics and Applied Probability, vol. 36. Springer-Science (1990)

  53. Landsman, Z.M., Valdez, E.A.: Tail conditional expectations for elliptical distributions. North Amer. Actuarial J. 7(4), 55–71 (2013). https://doi.org/10.1080/10920277.2003.10596118

    Article  MathSciNet  MATH  Google Scholar 

  54. Elstrodt, J.: Maßund integrationstheorie, 7th edn. Springer (2011)

  55. Farshbaf-Shaker, M.H., Henrion, R., Hömberg, D.: Properties of chance constraints in infinite dimensions with an application to pde constrained optimization. Set Valued Var. Anal. 26(4), 821–841 (2018). https://doi.org/10.1007/s11228-017-0452-5

    Article  MathSciNet  MATH  Google Scholar 

  56. van Ackooij, W., Minoux, M.: A characterization of the subdifferential of singular Gaussian distribution functions. Set Valued Var. Anal. 23(3), 465–483 (2015). https://doi.org/10.1007/s11228-015-0317-8

    Article  MathSciNet  MATH  Google Scholar 

  57. Henrion, R., Römisch, W.: Lipschitz and differentiability properties of quasi-concave and singular normal distribution functions. Ann. Oper. Res. 177, 115–125 (2010). https://doi.org/10.1007/s10479-009-0598-0

    Article  MathSciNet  MATH  Google Scholar 

  58. Henrion, R., Möller, A.: A gradient formula for linear chance constraints under Gaussian distribution. Math. Oper. Res. 37, 475–488 (2012). https://doi.org/10.1287/moor.1120.0544

    Article  MathSciNet  MATH  Google Scholar 

  59. van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: On joint probabilistic constraints with Gaussian Coefficient Matrix. Oper. Res. Lett. 39, 99–102 (2011). https://doi.org/10.1016/j.orl.2011.01.005

    Article  MathSciNet  MATH  Google Scholar 

  60. Clarke, F.H.: Optimisation and nonsmooth analysis, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (1987)

  61. Jofre, A., Thibault, L.: D-representation of subdifferentials of directionally lipschitz functions. Proc. Amer. Math. Soc. 110(1), 117–123 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  62. Correa, R., Hantoute, A., Pérez-Aros, P.: Subdifferential calculus rules for possibly nonconvex integral functions. SIAM J. Control Optim. 58(1), 462–484 (2020). https://doi.org/10.1137/18M1176476

    Article  MathSciNet  MATH  Google Scholar 

  63. Henrion, R.: Calmness as a constraint qualification for M-stationarity conditions in MPECs. In: Aussel, D., Latitha, C. (eds.) Generalized nash equilibrium problems, bilevel programming and MPEC, Forum for Interdisciplinary Mathematics, pp. 21–41. Springer Singapore (2017)

  64. Surowiec, T.M.: Explicit stationarity conditions and solution characterization for equilibrium problems with equilibrium constraints. Ph.D. Thesis, Humboldt-Universität zu Berlin (2010)

  65. van Ackooij, W., Malick, J.: Eventual convexity of probability constraints with elliptical distributions. Math. Program. 175(1), 1–27 (2019). https://doi.org/10.1007/s10107-018-1230-3

    Article  MathSciNet  MATH  Google Scholar 

  66. Kuo, F.Y., Sloan, I.H.: Quasi-Monte Carlo methods can be efficient for integration over products of spheres. J. Complex. 21, 196–210 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. Heitsch, H.: On probability capacity maximization in a stationary gas network. Optimization 69(3), 575–604 (2020). https://doi.org/10.1080/02331934.2019.1625353

    Article  MathSciNet  MATH  Google Scholar 

  68. Gotzes, C., Heitsch, H., Henrion, R., Schultz, R.: On the quantification of nomination feasibility in stationary gas networks with random loads. Math. Methods Oper. Res. 84, 427–457 (2016). https://doi.org/10.1007/s00186-016-0564-y

    Article  MathSciNet  MATH  Google Scholar 

  69. van Ackooij, W., Henrion, R., Möller, A.s, Zorgati, R.: Joint chance constrained programming for hydro reservoir management. Optim. Eng. 15, 509–531 (2014). https://doi.org/10.1007/s11081-013-9236-4

    MathSciNet  MATH  Google Scholar 

  70. Shapiro, A., Tekaya, W., da Costa, J.P., Soares, M.P.: Risk neutral and risk averse stochastic dual dynamic programming method. Eur. J. Oper. Res. 224(2), 375–391 (2013). https://doi.org/10.1016/j.ejor.2012.08.022

    Article  MathSciNet  MATH  Google Scholar 

  71. Bruhns, A., Deurveilher, G., Roy, J.S.: A non-linear regression model for mid-term load forecasting and improvements in seasonality. PSCC 2005 Luik (2005)

  72. Bremer, I., Henrion, R., Möller, A.: Probabilistic constraints via SQP solver: Application to a renewable energy management problem. Comput. Manag. Sci. 12, 435–459 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  73. Hager, W.W., Phan, D.T., Zhu, J.: Projection algorithms for nonconvex minimization with application to sparse principal component analysis. J. Glob. Optim. 65 (4), 657–676 (2016). https://doi.org/10.1007/s10898-016-0402-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The third author was partially supported by: CONICYT GRANTS: FONDECYT REGULAR 1190110 AND FONDECYT REGULAR 1200283 AND PROGRAMA REGIONAL MATHAMSUD 20-MATH-08 CODE: MATH190003

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim van Ackooij.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A An approximate projected gradient algorithm

We present in this Appendix a generic algorithm, similar to the one used in [67, Section 6] for solving the following problem:

$$ \begin{array}{@{}rcl@{}} \min\limits_{x \in X} \quad & f(x) \\ \text{s.t.} \quad & \phi(x) \ge p, \end{array} $$

where f is assumed to be affine, and ϕ is as defined in (1). We also assume that a point \(x_{0} \in X^{\prime } := \{x\in X : \mathbb {P}[ g(x,\xi ) \leq 0] \ge p\}\) is known (and therefore this set is not empty). Let us define \(\tau _{X^{\prime }}^{x_{0}} : X \mapsto [0,1]\) as follows:

$$ \tau_{X^{\prime}}^{x_{0}}(x) = \left \{ \begin{array}{cc} \min_{t\in [0,1]} & t \\ \text{s.t.} & \mathbb{P}[ g((1-t)x + tx_{0},\xi) \le 0] \ge p \end{array} \right. $$

and let us define \(P_{X^{\prime }}^{x_{0}} : X \rightarrow X^{\prime }\) as \(P_{X^{\prime }}^{x_{0}}(x) = (1-\tau _{X^{\prime }}^{x_{0}}(x))x + \tau _{X^{\prime }}^{x_{0}}(x) x_{0}\). Since \(X^{\prime }\) is a closed set, \(\tau _{X^{\prime }}^{x_{0}}\) and thus \(P_{X^{\prime }}^{x_{0}}\) are well defined. Since, it is not a proper projection, this algorithm is sometimes referred to as an approximate projected gradient algorithm. Convergence of such an algorithm is studied for example in [73]. Obtaining a numerical value for \(\tau _{X^{\prime }}^{x_{0}}\) can be done using a bisection method, having at each iteration k to compute \(\mathbb {P}[g((1-t_{k})x + t_{k} x_{0},\xi ) \le 0]\) and stopping when it reaches p up to a given tolerance.

The formulæ (33) can be exploited to compute ∇ϕ(xk) at a given trial point upon verifying condition (40).

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Ackooij, W., Javal, P. & Pérez-Aros, P. Derivatives of Probability Functions: Unions of Polyhedra and Elliptical Distributions. Set-Valued Var. Anal 30, 487–519 (2022). https://doi.org/10.1007/s11228-021-00598-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-021-00598-w

Keywords

Mathematics Subject Classification (2010)

Navigation