Skip to main content
Log in

Thermal aberrations and structured light II: experimental simulation with DMDs

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In part I of this work (Scholes and Forbes, Appl Phys B, 2021. https://doi.org/10.1007/s00340-021-07657-y), we provided a general model for optically induced thermal aberrations due to high power structured light pumps, highlighting the implications for arbitrary structured probes. We showed how the thermal effects impact on various structured light fields, and illustrated how to mitigate these effects using the structure of light as a new degree of freedom for control. Here, in part II, we demonstrate that thermo-optical effects can be simulated experimentally with cheap and fast digital micro-mirror devices. This approach represents a fully configurable, versatile, low-power physical simulator which replicates all the salient effects seen with high power sources, the latter notoriously difficult to experiment with. We demonstrate the efficacy of this simulator with various structured light beams under realistic thermal conditions which we programme as phase-only computer generated holograms, effective because the pertinent thermal effects themselves are phase-only aberrations to the field. Our work provides a new means to simulate thermal aberrations due to high power lasers and could be extended to correction techniques too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Cini, J. Mackenzie, Analytical thermal model for end-pumped solid-state lasers. Appl. Phys. B 123(12), 273 (2017)

    Article  ADS  Google Scholar 

  2. M.A. Isidro-Ojeda, J.J. Alvarado-Gil, V.S. Zanuto, M.L. Baesso, N.G. Astrath, L.C. Malacarne, Laser induced wavefront distortion in thick-disk material: an analytical description. Opt. Mater. 75, 574–579 (2018)

    Article  ADS  Google Scholar 

  3. L.C. Malacarne, N.G. Astrath, M.L. Baesso, Unified theoretical model for calculating laser-induced wavefront distortion in optical materials. JOSA B 29(7), 1772–1777 (2012)

    Article  ADS  Google Scholar 

  4. L.C. Malacarne, N.G. Astrath, L.S. Herculano, Laser-induced wavefront distortion in optical materials: a general model. JOSA B 29(12), 3355–3359 (2012)

    Article  ADS  Google Scholar 

  5. A.J. Kemp, G.J. Valentine, D. Burns, Progress towards high-power, high-brightness neodymium-based thin-disk lasers. Prog. Quantum Electron. 28(6), 305–344 (2004)

    Article  ADS  Google Scholar 

  6. M. Bass, W. Koechner, Solid-state lasers : a graduate text. (Springer-Verlag, New Haven, 2002). [Online]. http://www.springer.de/phys/

  7. S. Scholes, A. Forbes, Thermal aberrations and structured light I: analytical model for structured pumps and probes. Appl. Phys. B (2021). https://doi.org/10.1007/s00340-021-07657-y

    Article  Google Scholar 

  8. A. Forbes, M. de Oliveira, M.R. Dennis, Structured light. Nat. Photon. 15, 253–262 (2021)

    Article  ADS  Google Scholar 

  9. D.-L. Kim, B.-T. Kim, Laser output power losses in ceramic Nd:YAG lasers due to thermal effects. Optik 127(20), 9738–9742 (2016)

    Article  ADS  Google Scholar 

  10. H. Welling, C.J. Bickart, Spatial and temporal variation of the optical path length in flash-pumped laser rods. JOSA 56(5), 611–618 (1966)

    Article  ADS  Google Scholar 

  11. G. Baldwin, E. Riedel, Measurements of dynamic optical distortion in Nd-doped glass laser rods. J. Appl. Phys. 38(7), 2726–2738 (1967)

    Article  ADS  Google Scholar 

  12. J. Bradford, R. Eckardt, Compensating for pump-induced distortion in glass laser rods. Appl. Opt. 7(12), 2418\_1-2420 (1968)

    Article  Google Scholar 

  13. C. Pfistner, R. Weber, H. Weber, S. Merazzi, R. Gruber, Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods. IEEE J. Quantum Electron. 30(7), 1605–1615 (1994)

    Article  ADS  Google Scholar 

  14. W. Clarkson, Thermal effects and their mitigation in end-pumped solid-state lasers. J. Phys. D Appl. Phys. 34(16), 2381 (2001)

    Article  ADS  Google Scholar 

  15. D. Burnham, Simple measurement of thermal lensing effects in laser rods. Appl. Opt. 9(7), 1727–1728 (1970)

    Article  ADS  Google Scholar 

  16. J. Murray, Pulsed gain and thermal lensing of Nd:LiYF 4. IEEE J. Quantum Electron. 19(4), 488–491 (1983)

    Article  ADS  Google Scholar 

  17. B. Neuenschwander, R. Weber, H.P. Weber, Determination of the thermal lens in solid-state lasers with stable cavities. IEEE J. Quantum Electron. 31(6), 1082–1087 (1995)

    Article  ADS  Google Scholar 

  18. P. Hardman, W. Clarkson, G. Friel, M. Pollnau, D. Hanna, Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals. IEEE J. Quantum Electron. 35(4), 647–655 (1999)

    Article  ADS  Google Scholar 

  19. J.D. Mansell, J. Hennawi, E.K. Gustafson, M.M. Fejer, R.L. Byer, D. Clubley, S. Yoshida, D.H. Reitze, Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor. Appl. Opt. 40(3), 366–374 (2001)

    Article  ADS  Google Scholar 

  20. S. Chenais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. Aka, D. Vivien, Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW. Opt. Mater. 22(2), 129–137 (2003)

    Article  ADS  Google Scholar 

  21. V.V. Zelenogorsky, A.A. Solovyov, I.E. Kozhevatov, E.E. Kamenetsky, E.A. Rudenchik, O.V. Palashov, D.E. Silin, E.A. Khazanov, High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements. Appl. Opt. 45(17), 4092–4101 (2006)

    Article  ADS  Google Scholar 

  22. Z. Zhu, Y. Li, J. Chen, J. Ma, J. Chu, Development of a unimorph deformable mirror with water cooling. Opt. Express 25(24), 29916–29926 (2017)

    Article  ADS  Google Scholar 

  23. T. Peng, C. Dai, J. Lou, Y. Cui, B. Tao, J. Ma, A low-cost deformable lens for correction of low-order aberrations. Opt. Commun. 460, 125209 (2020)

    Article  Google Scholar 

  24. S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M.A. Ahmed, T. Graf, Deformable mirrors for intra-cavity use in high-power thin-disk lasers. Opt. Express 25(4), 4254–4267 (2017)

    Article  ADS  Google Scholar 

  25. H. Nadgaran, M. Servatkhah, The effects of induced heat loads on the propagation of Ince-Gaussian beams. Opt. Commun. 284(22), 5329–5337 (2011)

    Article  ADS  Google Scholar 

  26. M.-M. Zhang, S.-C. Bai, J. Dong, Effects of Cr4+ ions on forming Ince-Gaussian modes in passively Q-switched microchip solid-state lasers. Laser Phys. Lett. 16(2), 025003 (2019)

    Article  ADS  Google Scholar 

  27. H. Nadgaran, R. Fallah, Investigation of the pump reshaping effect on the thermally-affected Helmholtz-gauss beams generated by a solid-state laser. Laser Phys. 25(8), 085007 (2015)

    Article  ADS  Google Scholar 

  28. M. Sabaeian, H. Nadgaran, Bessel-Gauss beams: investigations of thermal effects on their generation. Opt. Commun. 281(4), 672–678 (2008)

    Article  ADS  Google Scholar 

  29. M. Gerber, T. Graf, A. Kudryashov, Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror. Appl. Phys. B 83(1), 43–50 (2006)

    Article  ADS  Google Scholar 

  30. T.Y. Cherezova, L.N. Kaptsov, A.V. Kudryashov, Cw industrial rod YAG: Nd 3+ laser with an intracavity active bimorph mirror. Appl. Opt. 35(15), 2554–2561 (1996)

    Article  ADS  Google Scholar 

  31. T.Y. Cherezova, S. Chesnokov, L. Kaptsov, A. Kudryashov, Super-Gaussian laser intensity output formation by means of adaptive optics. Opt. Commun. 155(1–3), 99–106 (1998)

    Article  ADS  Google Scholar 

  32. T.Y. Cherezova, S.S. Chesnokov, L.N. Kaptsov, V.V. Samarkin, A.V. Kudryashov, Active laser resonator performance: formation of a specified intensity output. Appl. Opt. 40(33), 6026–6033 (2001)

    Article  ADS  Google Scholar 

  33. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, D. Burns, Active transverse mode control and optimisation of an all-solid-state laser using an intracavity adaptive-optic mirror. Opt. Express 10(13), 550–555 (2002)

    Article  ADS  Google Scholar 

  34. W. Lubeigt, M. Griffith, L. Laycock, D. Burns, Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics. Opt. Express 17(14), 12057–12069 (2009)

    Article  ADS  Google Scholar 

  35. D. Kim, S. Noh, S. Ahn, J. Kim, Influence of a ring-shaped pump beam on temperature distribution and thermal lensing in end-pumped solid state lasers. Opt. Express 25(13), 14668–14675 (2017)

    Article  ADS  Google Scholar 

  36. D. Lin, W. Clarkson, Reduced thermal lensing in an end-pumped Nd:YVO4 laser using a ring-shaped pump beam, in CLEO: Science and Innovations. Optical Society of America, SM3M–5 (2016)

  37. T. Omatsu, K. Miyamoto, A.J. Lee, Wavelength-versatile optical vortex lasers. J. Opt. 19(12), 123002 (2017)

    Article  ADS  Google Scholar 

  38. A. Forbes, Controlling light‘s helicity at the source: orbital angular momentum states from lasers. Philos. Trans. R. Soc. A 375(2087), 20150436 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Z. Fang, K. Xia, Y. Yao, J. Li, Radially polarized \(\text{ LG}^{01}\)-mode Nd:YAG laser with annular pumping. Appl. Phys. B 117(1), 219–224 (2014)

    Article  ADS  Google Scholar 

  40. Z. Fang, K. Xia, Y. Yao, J. Li, Radially polarized and passively Q-switched Nd:YAG laser under annular-shaped pumping. IEEE J. Sel. Top. Quantum Electron. 21(1), 337–342 (2014)

    Article  ADS  Google Scholar 

  41. T. Dietrich, M. Rumpel, T. Graf, M.A. Ahmed, Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser. Opt. Express 23(20), 26651–26659 (2015)

    Article  ADS  Google Scholar 

  42. F. Brandt, M. Hiekkamäki, F. Bouchard, M. Huber, R. Fickler, High-dimensional quantum gates using full-field spatial modes of photons. Optica 7(2), 98–107 (2020)

    Article  ADS  Google Scholar 

  43. A. Forbes, I. Nape, Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci. 1(1), 011701 (2019)

    Article  ADS  Google Scholar 

  44. A. Forbes, Structured light from lasers. Laser Photonics Rev. 13(11), 1900140 (2019)

    Article  ADS  Google Scholar 

  45. C. Rosales-Guzmán, B. Ndagano, A. Forbes, A review of complex vector light fields and their applications. J. Opt. 20(12), 123001 (2018). [Online]. http://iopscience.iop.org/article/10.1088/2040-8986/aaeb7d

  46. H. Rubinsztein-Dunlop, A. Forbes, M.V. Berry, M.R. Dennis, D.L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer et al., Roadmap on structured light. J. Opt. 19(1), 013001 (2016)

    Article  ADS  Google Scholar 

  47. D. Kim, J. Kim, High-power \(\text{ TEM}^{00}\) and Laguerre-Gaussian mode generation in double resonator configuration. Appl. Phys. B 121(3), 401–405 (2015)

    Article  ADS  Google Scholar 

  48. M.L. Lukowski, J.T. Meyer, C. Hessenius, E.M. Wright, M. Fallahi, Generation of high-power spatially structured beams using vertical external cavity surface emitting lasers. Opt. Express 25(21), 25504–25514 (2017)

    Article  ADS  Google Scholar 

  49. P. Tuan, Y. Hsieh, Y. Lai, K. Huang, Y. Chen, Characterization and generation of high-power multi-axis vortex beams by using off-axis pumped degenerate cavities with external astigmatic mode converter. Opt. Express 26(16), 20481–20491 (2018)

    Article  ADS  Google Scholar 

  50. M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen et al., High-power single-stage single-crystal Yb: YAG fiber amplifier for radially polarized ultrashort laser pulses. Appl. Phys. B 123(5), 139 (2017)

    Article  ADS  Google Scholar 

  51. J. Kim, J. Mackenzie, J. Hayes, W. Clarkson, High power Er:YAG laser with radially-polarized Laguerre-Gaussian (\(\text{ LG}^{01}\)) mode output. Opt. Express 19(15), 14526–14531 (2011)

    Article  ADS  Google Scholar 

  52. M. Okida, T. Omatsu, M. Itoh, T. Yatagai, Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO 4 1.3-\(\mu \)m bounce laser. Opt. Express 15(12), 7616–7622 (2007)

    Article  ADS  Google Scholar 

  53. J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M.A. Ahmed, T. Graf, Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization. Appl. Phys. B 123(5), 156 (2017)

    Article  ADS  Google Scholar 

  54. R.-G. Carmelo, H. Xiao-Bo, S. Adam, P. Moreno-Acosta, S. Franke-Arnold, R. Ramos-Garcia, A. Forbes, Polarisation-insensitive generation of complex vector modes from a digital micromirror device. Sci. Rep. 10(1), 1–9 (2020)

    Google Scholar 

  55. W. Liu, J. Fan, C. Xie, Y. Song, C. Gu, L. Chai, C. Wang, M. Hu, Programmable controlled mode-locked fiber laser using a digital micromirror device. Opt. Lett. 42(10), 1923–1926 (2017)

    Article  ADS  Google Scholar 

  56. H. Messaoudi, F. Thiemicke, C. Falldorf, R.B. Bergmann, F. Vollertsen, Distortion-free laser beam shaping for material processing using a digital micromirror device. Prod. Eng. 11(3), 365–371 (2017)

    Article  Google Scholar 

  57. K.J. Mitchell, S. Turtaev, M.J. Padgett, T. Čižmár, D.B. Phillips, High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt. Express 24(25), 29269–29282 (2016)

    Article  ADS  Google Scholar 

  58. X. Ding, Y. Ren, R. Lu, Shaping super-Gaussian beam through digital micro-mirror device. Sci. China Phys. Mech. Astron. 58(3), 1–6 (2015)

    Google Scholar 

  59. Y.-X. Ren, Z.-X. Fang, L. Gong, K. Huang, Y. Chen, R.-D. Lu, Dynamic generation of Ince-Gaussian modes with a digital micromirror device. J. Appl. Phys. 117(13), 133106 (2015)

    Article  ADS  Google Scholar 

  60. Y.-X. Ren, R.-D. Lu, L. Gong, Tailoring light with a digital micromirror device. Ann. Phys. 527(7–8), 447–470 (2015)

    Article  MathSciNet  Google Scholar 

  61. Y.-X. Ren, Z.-X. Fang, L. Gong, K. Huang, Y. Chen, R.-D. Lu, Digital generation and control of Hermite-Gaussian modes with an amplitude digital micromirror device. J. Opt. 17(12), 125604 (2015)

    Article  ADS  Google Scholar 

  62. L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, Y. Li, Generation of cylindrically polarized vector vortex beams with digital micromirror device. J. Appl. Phys. 116, 183105 (2014)

    Article  Google Scholar 

  63. F. Schepers, T. Bexter, T. Hellwig, C. Fallnich, Selective Hermite-Gaussian mode excitation in a laser cavity by external pump beam shaping. Appl. Phys. B 125(5), 75 (2019)

    Article  ADS  Google Scholar 

  64. X. Hu, Q. Zhao, P. Yu, X. Li, Z. Wang, Y. Li, L. Gong, Dynamic shaping of orbital-angular-momentum beams for information encoding. Opt. Express 26(2), 1796–1808 (2018)

    Article  ADS  Google Scholar 

  65. A.O. Georgieva, A.V. Belashov, N.V. Petrov, Complex wavefront manipulation and holographic correction based on digital, in Emerging Digital Micromirror Device Based Systems and Applications XII, 11294. International Society for Optics and Photonics, 112940B (2020)

  66. M.A. Cox, E. Toninelli, L. Cheng, M.J. Padgett, A. Forbes, A high-speed, wavelength invariant, single-pixel wavefront sensor with a digital micromirror device. IEEE Access 7, 85860–85866 (2019)

    Article  Google Scholar 

  67. Y. Chen, Z.-X. Fang, Y.-X. Ren, L. Gong, R.-D. Lu, Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device. Appl. Opt. 54(27), 8030–8035 (2015)

    Article  ADS  Google Scholar 

  68. J. Di, Y. Yu, Z. Wang, W. Qu, C.Y. Cheng, J. Zhao, Quantitative measurement of thermal lensing in diode-side-pumped Nd: YAG laser by use of digital holographic interferometry. Opt. Express 24(25), 28185–28193 (2016)

    Article  ADS  Google Scholar 

  69. S. Scholes, R. Kara, J. Pinnell, V. Rodríguez-Fajardo, A. Forbes, Structured light with digital micromirror devices: a guide to best practice. Opt. Eng. 59(4), 041202 (2019)

    Article  ADS  Google Scholar 

  70. A. Manthalkar, I. Nape, N.T. Bordbar, C. Rosales-Guzmán, S. Bhattacharya, A. Forbes, A. Dudley, All-digital stokes polarimetry with a digital micromirror device. Opt. Lett. 45(8), 2319–2322 (2020)

    Article  ADS  Google Scholar 

  71. B. Zhao, X.-B. Hu, V. Rodríguez-Fajardo, A. Forbes, W. Gao, Z.-H. Zhu, C. Rosales-Guzmán, Determining the non-separability of vector modes with digital micromirror devices. Appl. Phys. Lett. 116(9), 091101 (2020)

    Article  ADS  Google Scholar 

  72. K. Singh, N. Tabebordbar, A. Forbes, A. Dudley, Digital stokes polarimetry and its application to structured light: tutorial. JOSA A 37(11), C33–C44 (2020)

    Article  Google Scholar 

  73. W.-H. Lee, Binary computer-generated holograms. Appl. Opt. 18(21), 3661–3669 (1979)

    Article  ADS  Google Scholar 

  74. M. Mirhosseini, O.S. Magana-Loaiza, C. Chen, B. Rodenburg, M. Malik, R.W. Boyd, Rapid generation of light beams carrying orbital angular momentum. Opt. Express 21(25), 30196–30203 (2013)

    Article  ADS  Google Scholar 

  75. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, M. Ritsch-Marte, Wavefront correction of spatial light modulators using an optical vortex image. Opt. Express 15(9), 5801–5808 (2007)

    Article  ADS  Google Scholar 

  76. T. Čižmár, M. Mazilu, K. Dholakia, In situ wavefront correction and its application to micromanipulation. Nat. Photonics 4(6), 388–394 (2010)

    Article  ADS  Google Scholar 

  77. S. Turtaev, I.T. Leite, K.J. Mitchell, M.J. Padgett, D.B. Phillips, T. Čižmár, Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express 25(24), 29874–29884 (2017)

    Article  ADS  Google Scholar 

  78. E. Bernhardi, A. Forbes, C. Bollig, M.D. Esser, Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model. Opt. Express 16(15), 11115–11123 (2008)

    Article  ADS  Google Scholar 

  79. D. Wright, Beamwidths of a diffracted laser using four proposed methods. Opt. Quantum Electron. 24(9), S1129–S1135 (1992)

    Article  Google Scholar 

  80. D. Wright, P. Greve, J. Fleischer, L. Austin, Laser beam width, divergence and beam propagation factor?an international standardization approach. Opt. Quantum Electron. 24(9), S993–S1000 (1992)

    Article  Google Scholar 

  81. A. Siegman, Standard of the measurement of beam widths, beam divergence and propagation factors, Proposal for a working draft ISO TC 172 SC9/WG1 (1990)

  82. J.F. Ready, Industrial Applications of Lasers (Elsevier, Amsterdam, 1997)

    Google Scholar 

  83. P. Shukla, J. Lawrence, A. Paul et al., Influence of laser beam brightness during surface treatment of a ZrO2 engineering ceramic. Lasers Eng. 22(3), 151 (2012)

    Google Scholar 

  84. P. Shukla, J. Lawrence, Y. Zhang, Understanding laser beam brightness: a review and new prospective in material processing. Opt. Laser Technol. 75, 40–51 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Council of Scientific and Industrial Research with the Department of Science for the funding provided through the Interbursary Incentive Funding Programme (CSIR-DST IBS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Forbes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the production or publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholes, S., Forbes, A. Thermal aberrations and structured light II: experimental simulation with DMDs. Appl. Phys. B 127, 116 (2021). https://doi.org/10.1007/s00340-021-07656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07656-z

Navigation