Skip to main content
Log in

Quantifying the Influences of Carbides and Porosities on the Fatigue Crack Evolution of a Ni-Based Single-Crystal Superalloy using X-ray Tomography

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The detrimental effects of carbides and porosity on the fatigue crack initiation and propagation of nickel-based single-crystal superalloys have been reported by many previous studies. However, few studies have quantitatively compared the fatigue damaging effects of carbides and pores on the fatigue crack evolution. In this study, a high-resolution X-ray computed tomography (XCT) characterization of a DD5 nickel-based single-crystal superalloy during fatigue test was performed. The evolution of carbides, pores and cracks at all stages was observed and tracked. In order to quantify the 3D microstructures, a new damage factor that correlates the morphology of fracture surface with crack evolution behaviors was proposed. It was found that porosity was more detrimental than carbides in crack initiation and propagation during fatigue tests. Furthermore, pore spacing has been found to be the most significant factor among all controlling pore characteristics in the crack initiation stage and sphericity is the most critical pore characteristic in the crack propagation stage. Therefore, by statistically analyzing the evolution of carbides and pores during fatigue tests in this study, the underlying fatigue cracking mechanism of nickel-based superalloys is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge university, Cambridge, 2008)

    Google Scholar 

  2. T.M. Pollock, S. Tin, J. Propul. Power 22, 361 (2006)

    Article  CAS  Google Scholar 

  3. B.A. Cowles, Int. J. Fract. 80, 147 (1996)

    Article  CAS  Google Scholar 

  4. H.S. Whitesell, R.A. Overfelt, Mater. Sci. Eng. A 318, 264 (2001)

    Article  Google Scholar 

  5. L. Kunz, P. Lukáš, R. Konečná, Int. J. Fatigue 32, 908 (2010)

    Article  CAS  Google Scholar 

  6. J.H. Fan, D.L. McDowell, M.F. Horstemeyer, K. Gall, Eng. Fract. Mech. Eng. Fract. Mech. 70, 1281 (2003)

    Article  Google Scholar 

  7. Y.X. Gao, J.Z. Yi, P.D. Lee, T.C. Lindley, Acta Mater. 52, 5435 (2004)

    Article  CAS  Google Scholar 

  8. M. Lamm, R.F. Singer, Metall. Mater. Trans. A 38, 1177 (2007)

    Article  Google Scholar 

  9. S. Steuer, P. Villechaise, T.M. Pollock, J. Cormier, Mater. Sci. Eng. A 645, 109 (2015)

    Article  CAS  Google Scholar 

  10. A. Cervellon, J. Cormier, F. Mauget, Z. Hervier, Int. J. Fatigue 104, 251 (2017)

    Article  CAS  Google Scholar 

  11. Y.H. Liu, M.D. Kang, Y. Wu, M.M. Wang, M. Lin, J.W. Yu, H.Y. Gao, J. Wang, Int. J. Fatigue 108, 79 (2018)

    Article  CAS  Google Scholar 

  12. R. Jiang, D.J. Bull, A. Evangelou, A. Harte, F. Pierron, I. Sinclair, M. Preuss, X.T. Hu, P.A.S. Reed, Int. J. Fatigue 114, 22 (2018)

    Article  CAS  Google Scholar 

  13. M. Šmíd, V. Horník, L. Kunz, K. Hrbáček P. Hutař, Metals 10, 1460 (2020).

  14. Y. Murakami, S. Kodama, S. Konuma, Int. J. Fatigue 11, 291 (1989)

    Article  CAS  Google Scholar 

  15. G.T. Cashman, J. Eng. Mater. Technol. 129, 293 (2007)

    Article  CAS  Google Scholar 

  16. D. Eylon, B. Strope, J. Mater. Sci. 14, 345 (1979)

    Article  CAS  Google Scholar 

  17. C.L. Brundidge, T.M. Pollock, Superalloys 2012, 379 (2012)

    Article  Google Scholar 

  18. L.R. Liu, T. Jin, N.R. Zhao, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 361, 191 (2003)

    Article  Google Scholar 

  19. K.L. Liu, J.S. Wang, Y.H. Yang, Y.Z. Zhou, C.J. Cao, Comput. Mater. Sci. 188, 110172 (2021).

  20. Z.F. Yang, A. Maurey, J.D. Kang, D.S. Wilkinson, Mater. Charact. 114, 254 (2016)

    Article  CAS  Google Scholar 

  21. P.D. Lee, J.D. Hunt, Acta Mater. 45, 4155 (1997)

    Article  CAS  Google Scholar 

  22. S.C. Wu, T.Q. Xiao, P.J. Withers, Eng. Fract. Mech. 182, 127 (2017)

    Article  Google Scholar 

  23. F. Xu, Theor. App. Mech. Lett. 8, 83 (2018)

    Article  Google Scholar 

  24. J.Y. Buffiere, S. Savelli, P.H. Jouneau, E. Maire, R. Fougères, Mater. Sci. Eng. A 316, 115 (2001)

    Article  Google Scholar 

  25. O. Ludwig, M. Dimichiel, L. Salvo, M. Suéry, P. Falus, Mater. Sci. Eng. A 36, 1515 (2005)

    Google Scholar 

  26. J.S. Wang, P.D. Lee, R.W. Hamilton, M. Li, J. Allison, Scr. Mater. 60, 516 (2009)

    Article  CAS  Google Scholar 

  27. A.B. Phillion, R.W. Hamilton, D. Fuloria, A.C. Leung, P. Rockett, T. Connolley, P.D. Lee, Acta Mater. 59, 1436 (2011)

    Article  CAS  Google Scholar 

  28. L. Liu, N.S. Husseini, C.J. Torbet, W.K. Lee, R. Clarke, J.W. Jones, T.M. Pollock, Acta Mater. 59, 5103 (2011)

    Article  CAS  Google Scholar 

  29. S.G. Wang, S.C. Wang, L. Zhang, Acta Metall Sin 49, 897 (2013)

    Article  CAS  Google Scholar 

  30. F. Xu, W.C. Liu., Y. Xiao, B. Dong, X.F. Hu, X.P. Wu, Appl. Phys. Lett. 110, 101904 (2017).

  31. E. Plancher, P. Gravier, E. Chauvet, J.J. Blandin, E. Boller, G. Martin, L. Salvo, P. Lhuissier, Acta Mater. 181, 1 (2019)

    Article  CAS  Google Scholar 

  32. S.S. Shuai, X. Lin, Y.H. Dong, L. Hou, H.L. Liao, J. Wang, Z.M. Ren, J. Mater. Sci. Technol. 35, 75 (2019)

    Article  Google Scholar 

  33. Z.Y. Ding, Q.D. Hu, W.Q. Lu, F. Yang, Y.H. Zhou, N.F. Zhang, S. Gao, L. Yu, J.G. Li, J. Mater. Sci. Technol. 54, 40 (2020)

    Article  Google Scholar 

  34. H. Toda, I. Sinclair, J.Y. Buffiere, E. Maire, K.H. Khor, P. Gregon, T. Kobayashi, Acta Mater. 52, 1305 (2004)

    Article  CAS  Google Scholar 

  35. S.C. Wu, C. Yu, W.H. Zhang, Y.N. Fu, L. Helfen, Sci. Technol. Weld. Join. 20, 11 (2015)

    Article  CAS  Google Scholar 

  36. Z.K. Wu, S.C. Wu, J. Zhang, Z. Song, Y.N. Hu, G.Z. Kang, H.O. Zhang, Acta Metall. Sin. 55, 811 (2019)

    CAS  Google Scholar 

  37. Z.Y. Ding, N.F. Zhang, L. Yu, W.Q. Lu, J.G. Li, Q.D. Hu, Acta Metall. Sin. 34, 145 (2021)

    Article  CAS  Google Scholar 

  38. R. Makovetsky, N. Piche, M. Marsh, Microsc. Microanal. 24, 532 (2018)

    Article  Google Scholar 

  39. P.N. Quested, M. McLean, Mater. Sci. Eng. 65, 171 (1984)

    Article  CAS  Google Scholar 

  40. J. Chen, J.H. Lee, C.Y. Jo, S.J. Choe, Y.T. Lee, Mater. Sci. Eng. A 247, 113 (1998)

    Article  Google Scholar 

  41. X.F. Ma, H.J Shi, Int. J. Fatigue 61, 255 (2014).

  42. K. Prasad, R. Sarkar, K. Gopinath, Mater. Sci. Eng. A 654, 381 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Ministry of Industry and Information Technology through the National Science and Technology Major Project of China (No. 2017-VI-0003-0073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsheng Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Wang, J., Wang, B. et al. Quantifying the Influences of Carbides and Porosities on the Fatigue Crack Evolution of a Ni-Based Single-Crystal Superalloy using X-ray Tomography. Acta Metall. Sin. (Engl. Lett.) 35, 133–145 (2022). https://doi.org/10.1007/s40195-021-01273-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01273-7

Keywords

Navigation