Skip to main content

Advertisement

Log in

Effect of Drosophila suzukii on Blueberry VOCs: Chemical Cues for a Pupal Parasitoid, Trichopria anastrephae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Biocontrol agents such as parasitic wasps use long-range volatiles and host-associated cues from lower trophic levels to find their hosts. However, this chemical landscape may be altered by the invasion of exotic insect species. The spotted-wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), is a highly polyphagous fruit pest native to eastern Asia and recently arrived in South America. Our study aimed to characterize the effect of SWD attack on the volatile organic compounds (VOCs) of blueberries, a common host fruit, and to correlate these odor changes with the olfactory-mediated behavioral response of resident populations of Trichopria anastrephae parasitoids, here reported for the first time in Uruguay. Using fruit VOC chemical characterization followed by multivariate analyses of the odor blends of blueberries attacked by SWD, we showed that the development of SWD immature stages inside the fruit generates a different odor profile to that from control fruits (physically damaged and free of damage). These differences can be explained by the diversity, frequency, and amounts of fruit VOCs. The behavioral response of T. anastrephae in Y-tube bioassays showed that female wasps were significantly attracted to volatiles from SWD-attacked blueberries when tested against both clean air and undamaged blueberries. Therefore, T. anastrephae females can use chemical cues from SWD-infested fruits, which may lead to a successful location of their insect host. Since resident parasitoids are able to locate this novel potential host, biological control programs using local populations may be plausible as a strategy for control of SWD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

Data is available from the corresponding authors on request.

Code availability.

Code is available from the corresponding authors on request.

Code Availability

Code is available from the corresponding authors on request.

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publ, Carol Stream

    Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG et al (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544. https://doi.org/10.1016/j.tree.2004.07.021

    Article  PubMed  Google Scholar 

  • Atallah J, Teixeira L, Salazar R, Zaragoza G, Kopp A (2014) The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc Biol Sci 281(1781):20132840. https://doi.org/10.1098/rspb.2013.2840

    Article  PubMed  PubMed Central  Google Scholar 

  • Biondi A, Wang X, Miller JC et al (2017) Innate olfactory responses of Asobara japonica toward fruits infested by the invasive spotted wing drosophila. J Insect Behav 30:495–506. https://doi.org/10.1007/s10905-017-9636-y

    Article  Google Scholar 

  • Biondi A, Wang X, Daane KM (2021) Host preference of three Asian larval parasitoids to closely related Drosophila species: implications for biological control of Drosophila suzukii. J Pest Sci 94:273–283. https://doi.org/10.1007/s10340-020-01272-0

    Article  Google Scholar 

  • Bolda MP, Goodhue RE, Zalom FG (2010) Spotted wing drosophila: potential economic impact of newly established pest. Giannini Foundation of Agricultural Economics, University of California. Agric Resour Econ Update 13:5–8

    Google Scholar 

  • Carrasco D, Desurmont GA, Laplanche D, Proffit M, Gols R et al (2017) With or without you: Effects of the concurrent range expansion of an herbivore and its natural enemy on native species interactions. Glob Change Biol 24:631–643

    Article  Google Scholar 

  • Cha D, Adams T, Rogg H, Landolt PJ (2012) Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing drosophila, Drosophila suzukii. J Chem Ecol 38:1419–1431

    Article  CAS  Google Scholar 

  • Chabaane Y, Laplanche D, Turlings TC, Desurmont GA (2015) Impact of exotic insect herbivores on native tritrophic interactions: a case study of the African cotton leafworm, Spodoptera littoralis and insects associated with the field mustard Brassica rapa. J Ecol 103:109–117

    Article  Google Scholar 

  • Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. B Insectol 65:149–160

    Google Scholar 

  • Cloonan KR, Abraham J, Angeli S et al (2018) Advances in the chemical ecology of the spotted wing drosophila (Drosophila suzukii) and its applications. J Chem Ecol 44:922–939. https://doi.org/10.1007/s10886-018-1000-y

    Article  PubMed  CAS  Google Scholar 

  • Cusumano A, Harvey JA, Bourne ME, Poelman EH, de Boer JG (2020) Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests. Pest Man Sci 76:432–443

    Article  CAS  Google Scholar 

  • de la Vega GJ, Corley JC (2019) Drosophila suzukii (Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. Int J Pest Manage 65:217–227. https://doi.org/10.1080/09670874.2018.1547460

    Article  Google Scholar 

  • de la Vega GJ, Corley JC, Soliani C (2020) Genetic assessment of the invasion history of Drosophila suzukii in Argentina. J Pest Sci 93:63–75. https://doi.org/10.1007/s10340-019-01149-x

    Article  Google Scholar 

  • Desurmont GA, von Arx M, Turlings TCJ, Schiestl FP (2020) Floral odors can interfere with the foraging behavior of parasitoids searching for hosts. Front Ecol Evol 8:148. https://doi.org/10.3389/fevo.2020.00148

    Article  Google Scholar 

  • Farneti B, Khomenko I, Grisenti M et al (2017) Exploring blueberry aroma complexity by chromatographic and direct-injection spectrometric techniques. Front Plant Sci 8:617

    Article  Google Scholar 

  • Gilbert JL, Schwieterman ML, Colquhoun TA, Clark DG, Olmstead JW (2013) Potential for increasing southern highbush blueberry flavor acceptance by breeding for major volatile components. HortScience 48:835–843

    Article  CAS  Google Scholar 

  • Hamby KA, Becher PG (2016) Current knowledge of interactions between Drosophila suzukii (Diptera: Drosophilidae) and microbes, and their potential utility for pest management. J Pest Sci 89:621–630

    Article  Google Scholar 

  • Harvey JA, Fortuna TM (2012) Chemical and structural effects of invasive plants on herbivore–parasitoid/predator interactions in native communities. Entomol Exp Applic 144:14–26

    Article  Google Scholar 

  • Hervé MR, Nicolè F, Lê Cao K (2018) Multivariate Analysis of multiple datasets: a practical guide for chemical ecology. J Chem Ecol 44:215–234. https://doi.org/10.1007/s10886-018-0932-6

    Article  PubMed  CAS  Google Scholar 

  • Horvat RJ, Schlotzhauer WS, Chortyk OT et al (1996) Comparison of volatile compounds from rabbiteye blueberry (Vaccinium ashei) and deerberry (V. stamineum) during maturation. J Essent Oil Res 8:645–648

    Article  CAS  Google Scholar 

  • Ibouh K, Oreste M, Bubici G et al (2019) Biological control of Drosophila suzukii: efficacy of parasitoids, entomopathogenic fungi, nematodes and deterrents of oviposition in laboratory assays. Crop Prot 125:104897

    Article  CAS  Google Scholar 

  • Jaworski CC, Bompard A, Genies L, Amiens-Desneux E, Desneux N (2013) Preference and prey switching in a generalist predator attacking local and invasive alien pests. PLoS ONE 8(12):e82231

    Article  CAS  Google Scholar 

  • Karageorgi M, Brńcker LB, Lebreton S et al (2017) Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr Biol 27:847–853

    Article  CAS  Google Scholar 

  • Keesey IW, Knaden M, Hansson BS (2015) Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J Chem Ecol 41:121–128

    Article  CAS  Google Scholar 

  • Krüger AP, Scheunemann T, Vieira JGA et al (2019) Effects of extrinsic, intraspecific competition and host deprivation on the biology of Trichopria anastrephae (Hymenoptera: Diapriidae) reared on Drosophila suzukii (Diptera: Drosophilidae). Neotrop Entomol 48:957–965. https://doi.org/10.1007/s13744-019-00705-5

    Article  PubMed  CAS  Google Scholar 

  • Kruitwagen A, Beukeboom LW, Wertheim B (2018) Optimization of native biocontrol agents, with parasitoids of invasive pest Drosophila suzukii as an example. Evol Appl 11:1473–1497

    Article  Google Scholar 

  • Lantschner MV, de la Vega GJ, Corley JC (2019) Modelling the establishment, spread and distribution shifts of pests. Int J Pest Manag 65:187–189. https://doi.org/10.1080/09670874.2019.1575490

    Article  Google Scholar 

  • Lee JC, Wang X, Daane KM, Hoelmer KA, Isaacs R, Sial AA, Walton VW (2019) Biological control of spotted-wing drosophila (Diptera: Drosophilidae)—current and pending tactics. J Integr Pest Manag 10:13

    Article  Google Scholar 

  • Liu CM, Matsuyama S, Kainoh Y (2019) Synergistic effects of volatiles from host-infested plants on host-searching behavior in the parasitoid wasp Lytopylus rufipes (Hymenoptera: Braconidae). J Chem Ecol 45:684–692

    Article  CAS  Google Scholar 

  • Mair MM, Ruther J (2019) Chemical ecology of the parasitoid wasp genus Nasonia (Hymenoptera, Pteromalidae). Front Ecol Evol 7:184

    Article  Google Scholar 

  • Mumm R, Hilker M (2005) The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem Senses 30:337–343

    Article  CAS  Google Scholar 

  • Nunney L (1996) The colonization of oranges by the cosmopolitan Drosophila. Oecologia 108(3):552–561

    Article  Google Scholar 

  • R Core Development Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Revadi S, Vitagliano S, Rossi Stacconi MV, Ramasamy S, Mansourian S et al (2015) Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiol Entomol 40:54–64

    Article  CAS  Google Scholar 

  • Rombaut A, Guilhot R, Xuéreb A, Benoit L, Chapuis MP, Gibert P, Fellous S (2017) Invasive Drosophila suzukii facilitates Drosophila melanogaster infestation and sour rot outbreaks in the vineyards. Roy Soc Open Sci 4:170117. https://doi.org/10.1098/rsos.170117

    Article  CAS  Google Scholar 

  • Scheidler NH, Liu C, Hamby KA, Zalom FG, Syed Z (2015) Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 5:14059

    Article  CAS  Google Scholar 

  • Schröder R, Hilker M (2008) The relevance of background odor in resource location by insects: a behavioral approach. AIBS Bull 58:308–316

    Google Scholar 

  • Schulz AN, Lucardi RD, Marsico TD (2019) Successful invasions and failed biocontrol: the role of antagonistic species interactions. Bioscience 69:711–724. https://doi.org/10.1093/biosci/biz075

    Article  Google Scholar 

  • Stökl J, Strutz A, Dafni A et al (2010) A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Curr Biol 20:1846–1852

    Article  CAS  Google Scholar 

  • Tochen S, Dalton DT, Nik W et al (2014) Temperature-Related Development and Population Parameters for Drosophila suzukii (Diptera: Drosophilidae) on Cherry and Blueberry. Environ Entomol 43:501–510

    Article  Google Scholar 

  • Urbaneja-Bernat P, Cloonan K, Zhang A et al (2021) Fruit volatiles mediate differential attraction of Drosophila suzukii to wild and cultivated blueberries. J Pest Sci. https://doi.org/10.1007/s10340-021-01332-z

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Vieira JGA, Krüger AP, Scheuneumann T et al (2019) Some aspects of the biology of Trichopria anastrephae (Hymenoptera: Diapriidae), a resident parasitoid attacking Drosophila suzukii (Diptera: Drosophilidae) in Brazil. J Econ Entomol 113:81–87

    Google Scholar 

  • Vieira JGA, Krüger AP, Scheunemann T et al (2020) Effect of temperature on the development time and life-time fecundity of Trichopria anastrephae parasitizing Drosophila suzukii. J Appl Entomol 144:857–865. https://doi.org/10.1111/jen.12799

    Article  CAS  Google Scholar 

  • Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:1–8

    Article  Google Scholar 

  • Wang X, Kacar G, Biondi A, Daane KM (2016) Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. Biocontrol 61:387–397

    Article  CAS  Google Scholar 

  • Wolf S, Boycheva-Woltering S, Romeis J, Collatz J (2020) Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J Pest Sci 93:627–638

    Article  Google Scholar 

  • Wollmann J, Schlesener DCH, Ferreira MS, Garcia FRM (2016) Parasitoids of Drosophilidae with potential for parasitism on Drosophila suzukii in Brazil. Drosophila Inf Serv 99:38–42

    Google Scholar 

  • Woltz J, Megan J, Lee C (2017) Pupation behavior and larval and pupal biocontrol of Drosophila suzukii in the field. Biol Control 110:62–69

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Professor Wittko Francke, for his generous contribution to the growth of chemical ecology in Latin America. This project was funded by Grants from Agencia Nacional de Investigación e Innovación: FMV-1-2019-1-156089 and PD_NAC_2018_1_150632 (fellowship to GD). We thank Dr. Beatriz Goñi for kind help and advice in field collections, Daniela Mato for assistance in VOC collections, and Finca La Micaela for access to their organic farm.

Funding

This project was funded by grants from Agencia Nacional de Investigación e Innovación (ANII): FMV-1-2019-1-156089 and PD_NAC_2018_1_150632 (fellowship to GD).

Author information

Authors and Affiliations

Authors

Contributions

AG and GD conceived and designed research; GD, AG, and FT collected the data; AG identified the chemical compounds; FT led the parasitoid experiments; GD and AG led the analysis and writing of the manuscript. All authors contributed to the drafts and approved the manuscript.

Corresponding authors

Correspondence to G. J. de la Vega or A. González.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 25 kb)

Supplementary file2 (DOC 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Vega, G.J., Triñanes, F. & González, A. Effect of Drosophila suzukii on Blueberry VOCs: Chemical Cues for a Pupal Parasitoid, Trichopria anastrephae. J Chem Ecol 47, 1014–1024 (2021). https://doi.org/10.1007/s10886-021-01294-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-021-01294-7

Keywords

Navigation