Skip to main content
Log in

Solving Dirichlet boundary problems for ODEs via swarm intelligence

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we examine the effects of swarm intelligence techniques on the obtaining of numerical solutions of ordinary differential equations (ODEs) with Dirichlet boundary conditions (DBCs) via feed-forward neural networks. Population-based global optimization methods such as artificial bee colony (ABC), ant colony optimization (ACO), gravitational search algorithm (GSA) and particle swarm optimization (PSO) are utilized in order to solve ODEs with DBCs numerically. Furthermore, we hybridize ACO, ABC and GSA with PSO to improve the numerical solution of optimization algorithms. Unlike the approaches in the literature, we use the personal best and global best solutions of PSO for the updating position of employed and onlooker bees in ABC, in the hybrid method that combines PSO and ABC. We also prefer the adaptive number of swarm scheme on the hybrid system of PSO and ACO. In the experiments, we give some different Dirichlet Boundary Problems to indicate the efficiency of optimization methods. Also the results are compared with the well-known traditional methods as shooting method, finite difference method and Lobatto IIIa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, A., Jatoth, R.K., Rajasekhar, A.: Hybrid differential artificial Bee Colony Algorithm. J. Comput. Theor. Nanosci. 9(2), 249–257 (2012)

    Article  Google Scholar 

  2. Altun, O., Korkmaz, T.: Particle swarm optimization artificial bee colony chain (PSOABCC): a hybrid metaheuristic algorithm. In: Advances in Computer Science and Informatics (ACSI-2014), Scientific Cooperations International Workshops on Electrical and Computer Engineering Subfields, Koc University, Istanbul, Turkey, pp. 42–49 (2014)

  3. Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2(4), 353–373 (2005)

    Article  Google Scholar 

  4. Bohat, V.K., Arya, K.V.: An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feedforward neural networks. Knowl. Based Syst. 143, 192–207 (2018)

    Article  Google Scholar 

  5. Chun-Feng, W., Kui, L., Pei-Ping, S.: Hybrid artificial bee colony algorithm and particle swarm search for global optimization. Math. Probl. Eng. 832949, 1–8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. El-Abd, M.: A hybrid ABC-SPSO algorithm for continuous function optimization. In: 2011 IEEE Symposium on Swarm Intelligence, pp. 1–6 (2011)

  7. El-Abd, M.: On the hybridization of the artificial Bee Colony and Particle Swarm Optimization Algorithms. J. Artif. Intell. Soft Comput. Res. 2(2), 147–155 (2012)

    MathSciNet  Google Scholar 

  8. Gao, W., Liu, S., Huang, L.: A global best Artificial Bee Colony Algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghanem, W., Jantan, A.: Using hybrid Artificial Bee Colony Algorithm and Particle Swarm Optimization for training feed-forward neural networks. J. Theor. Appl. Inf. Technol. 67(3), 664–674 (2014)

    Google Scholar 

  10. Ibraheem, K.I., Khalaf, B.M.: Shooting neural networks algorithm for solving boundary value problems in ODEs. Appl. Appl. Math. 6(11), 1927–1941 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Jadon, S.S., Tiwari, R., Sharma, H., Bansal, J.C.: Hybrid Artificial Bee Colony Algorithm with differential evolution. Appl. Soft Comput. 58, 11–24 (2017)

    Article  Google Scholar 

  12. Karaboga, D.: An idea based on Honey Bee Swarm for numerical optimization. Technical Report, Erciyes University (2005)

  13. Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony Algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  15. Kıran, M.S., Gündüz, M.: A recombination-based hybridization of particle Swarm Optimization and Artificial Bee Colony Algorithm for continuous optimization problems. Appl. Soft Comput. 13(4), 2188–2203 (2013)

    Article  Google Scholar 

  16. Kumar, M., Yadav, N.: Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations a survey. Comput. Math. Appl. 62(10), 3796–3811 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar, S., Sharma, V.K., Kumari, R.: A novel hybrid crossover based Artificial Bee Colony Algorithm for optimization problem. Int. J. Comput. Appl. 82(8), 18–25 (2013)

    Google Scholar 

  18. Kuok, K.K., Harun, S., Shamsuddin, S.M.: Particle Swarm Optimization feedforward neural network for modeling runoff. Int. J. Environ. Sci. Technol. 7(1), 67–78 (2010)

    Article  Google Scholar 

  19. Lee, H., Kang, I.S.: Neural algorithms for solving differential equations. Journal of Computational Physics. 91(1), 110–131 (1990)

  20. Li, M., Duan, H., Shi, D.: Hybrid artificial bee colony and particle swarm optimization approach to protein secondary structure prediction. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, pp. 5040–5044. (2012)

  21. Li, Z., Wang, W., Yan, Y., Li, Z.: PS-ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Expert Syst. Appl. 42(22), 8881–8895 (2015)

    Article  Google Scholar 

  22. Malek, A., Beidokhti, R.S.: Numerical solution for high order differential equations using a hybrid neural network Optimization method. Appl. Math. Comput. 183(1), 260–271 (2006)

  23. Mall, S., Chakraverty, S.: Comparison of artificial neural network architecture in solving ordinary differential equations. Adv. Artif. Neural Syst. 1–24 (2013)

  24. Mall, S., Chakraverty, S.: Artificial Neural Networks for Engineers and Scientists. CRC Press, Solving Ordinary Differential Equations (2017)

  25. Meade, A.J., Fernandez, A.A.: The numerical solution of linear ordinary differential equations by feedforward neural networks. Math. Comput. Model. 19(12), 1–25 (1994)

  26. Mirjalili, S.: How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Applied Intelligence. 43(1), 150–161 (2015)

    Article  Google Scholar 

  27. Mirjalili, S., Hashim, S.Z.M.: A new hybrid PSOGSA algorithm for function optimization. In: Proceedings of ICCIA 2010 - 2010 International Conference on Computer and Information Application. IEEE(2010), pp. 374–377

  28. Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012)

  29. Mirsadeghi, E., Panahi, M.S.: Hybridizing Artificial Bee Colony with Simulated Annealing. Int. J. Hybrid Inf. Technol. 4(5), 11 (2012)

  30. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, vol. 1, pp. 762–767. (1989)

  31. Nguyen, H.B., Xue, B., Liu, I., Zhang, M.: PSO and statistical clustering for feature selection: a new representation. In: Simulated Evolution and Learning: 10th International Conference, SEAL, Dunedin, New Zealand. vol. 2014, pp. 569–581. (2014)

  32. Ojha, V.K., Abraham, A., Snášel, V.: Metaheuristic design of feedforward neural networks: A review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017)

    Article  Google Scholar 

  33. Pakdaman, M., Ahmadian, A., Effati, S., Salahshour, S., Baleanu, D.: Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl. Math. Comput. 293, 81–95 (2017)

  34. Qu, H.: Cosine Radial Basis Function Neural Networks for Solving Fractional Differential Equations. Adv. Appl. Math. Mech. 9(3), 667–679 (2017)

  35. Raja, M.A.Z.: Numerical treatment for boundary value problems of Pantograph functional differential equation using computational intelligence algorithms. Appl. Soft Comput. 24, 806–821 (2014)

    Article  Google Scholar 

  36. Raja, M.A.Z.: Stochastic numerical treatment for solving Troesch‘s problem. Inf. Sci. 279, 860–873 (2014)

  37. Raja, M.A.Z., Ahmad, S., Samar, R.: Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Comput. Appl. 25(7), 1723–1739 (2014)

  38. Raja, M.A.Z., Manzar, M.A., Samar, R.: An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Applied Mathematical Modeling. 39(10), 3075–3093 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Raja, M.A.Z., Samar, R., Manzar, M.A., Shah, S.M.: Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley-Torvik equation. Mathematics and Computers in Simulation. 132, 139–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

  41. X. Shi and Y. Li and H. Li and R. Guan and L. Wang and Y. Liang: An integrated algorithm based on artificial bee colony and particle swarm optimization. In: 2010 Sixth International Conference on Natural Computation, vol. 5, pp. 2586–2590. (2010)

  42. Shrimal, G., Rathi, R.: A Hybrid Best So Far Artificial Bee Colony Algorithm for Function Optimization. International Journal of Computer Science and Information Technologies. 5(4), 5651–5658 (2014)

    Google Scholar 

  43. Sinchev, B., Sibanbayeva, S.E., Mukhanova, A.M., Nurgulzhanova, A.N., Zaurbekov, N.S., Imanbayev, K.S., Gagarina, N.L., Baibolova, L.K.: Some methods of training radial basis neural networks in solving the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 86(10), 625–636 (2018)

    Article  MathSciNet  Google Scholar 

  44. Slowik, A., Bialko, M.: Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on Human System Interactions Journal of Computational and Theoretical Nanoscience, pp. 60–65. (2008)

  45. Socha, K., Blum, C.: Hybrid Differential Artificial Bee Colony Algorithm. Neural Comput. Appl. 16(3), 235–247 (2007)

    Article  Google Scholar 

  46. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185(3), 1155–1173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tuba, M., Brajevic, I., Jovanovic, R.D.: Hybrid seeker optimization algorithm for global optimization. Appl. Math. Inf. Sci. 7(3), 867–875 (2013)

    Article  MathSciNet  Google Scholar 

  49. Wang, S., Rao, R.V., Chen, P., Zhang, Y., Liu, A., Wei, L.: Abnormal breast detection in mammogram images by feed-forward neural network trained by Jaya Algorithm. Fundam. Inform. 151, 191–211 (2017)

    Article  MathSciNet  Google Scholar 

  50. Weinan, E., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5, 349–380 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yazdi, H.S., Pakdaman, M., Modaghegh, H.: Unsupervised kernel least mean square algorithm for solving ordinary differential equations. Neurocomputing 74(12–13), 2062–2071 (2011)

    Article  Google Scholar 

  52. Yildiz, A.R.: Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf. Sci. 220, 399–407 (2013)

    Article  MathSciNet  Google Scholar 

  53. Zhang, Y., Phillips, P., Wang, S., Ji, G., Yang, J., Wu, J.: Fruit classification by biogeography-based optimization and feedforward neural network. Expert Syst. J. Knowl. Eng. 33(3), 239–253 (2016)

    Article  Google Scholar 

  54. Zúñiga-Aguilar, C.J., Romero-Ugalde, H.M., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., Valtierra-Rodríguez, M.: Solving fractional differential equations of variable-order involving operators with Mittag–Leffler kernel using artificial neural networks. Chaos Solitons Fractals 103, 382–403 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korhan Günel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research has been supported by the Council of Higher Education in Turkey (YÖK), Coordination of Academic Member Training Program (ÖYP) in Aydın Adnan Menderes University, under Grant No. ADÜ-ÖYP-14011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günel, K., Gör, İ. Solving Dirichlet boundary problems for ODEs via swarm intelligence. Math Sci 16, 325–341 (2022). https://doi.org/10.1007/s40096-021-00424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00424-2

Keywords

Mathematics Subject Classification

Navigation