Skip to main content
Log in

Harmonic analysis for rank-1 randomised Horn problems

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The randomised Horn problem, in both its additive and multiplicative versions, has recently drawn an increasing interest. Especially, closed analytical results have been found for the rank-1 perturbation of sums of Hermitian matrices and products of unitary matrices. We will generalise these results to rank-1 perturbations for products of positive-definite Hermitian matrices and prove the other results in a new unified way. Our ideas work along harmonic analysis for matrix groups via spherical transforms that have been successfully applied in products of random matrices in the past years. In order to achieve the unified derivation of all three cases, we define the spherical transform on the unitary group and prove its invertibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In probability theory, conventionally a characteristic function is defined as \(\mathbb {E}_X[e^{itX}]\) instead.

References

  1. Ahn, A.: Fluctuations of \(\beta \)-Jacobi Product Processes (2019). [arXiv:1910.00743]

  2. Andréief, C.: Note sur une relation entre les intégrales définies des produits des fonctions. Mém. Soc. Sci. Phys. Nat. Bordeaux (3) 2, 1–14 (1886)

  3. Baryshnikov, Y.: GUEs and queues. Probab. Theory Relat. Fields 119, 256–274 (2001)

    Article  MathSciNet  Google Scholar 

  4. Beenakker, C.W.J.: Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731 (1997). [arXiv:cond-mat/9612179]

  5. Bercovici, H., Collins, B., Dykema, K., Li, W.S.: Characterization of singular numbers of products of operators in matrix algebras and finite von Neumann algebras. Bulletin des Sciences Mathématique 139(4), 400–19 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bhatia, R.: Linear algebra to quantum cohomology: the story of Alfred Horn’s inequalities. Am. Math. Mon. 108, 289–318 (2001)

    Article  MathSciNet  Google Scholar 

  7. Boas Jr., R.P., Pollard, H.: Continuous analogues of series. Am. Math. Monthly 80, 18–25 (1973)

    Article  MathSciNet  Google Scholar 

  8. Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704–732 (1998). [arXiv:math.CA/9804027]

  9. Borodin, A., Gorin, V., Strahov, E.: Product matrix processes as limits of random plane partitions. Int. Math. Res. Not. IMRN 20, 6713–6768 (2020). [arXiv:1806.10855]

  10. Coquereaux, R., Zuber, J.-B.: From orbital measures to Littlewood–Richardson coefficients and hive polytopes. Ann. Inst. Henri Poincaré D 5(3), 339–386 (2018). [arXiv:1706.02793]

  11. Coquereaux, R., McSwiggen, C., Zuber, J.-B.: On Horn’s problem and its volume function. Commun. Math. Phys. 376(3), 2409–2439 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. Diaconis, P., Forrester, P.J.: Hurwitz and the origin of random matrix theory in mathematics. Random Matrices Theory Appl. 6, 1730001 (26 pages) (2017). [arXiv:1512.09229]

  13. Dorokhov, O.N.: Transmission coefficient and the localization length of an electron in N bound disordered chains. JETP Lett. 36(7), 318–321 (1982)

    ADS  Google Scholar 

  14. Faraut, J.: Rayleigh theorem, projection of orbital measures and spline functions. Adv. Pure Appl. Math. 6, 261–283 (2015)

    Article  MathSciNet  Google Scholar 

  15. Faraut, J.: Horn’s problem and Fourier analysis. Tunisian J. Math. 1, 585–606 (2018)

    Article  MathSciNet  Google Scholar 

  16. Forrester, P.J.: Log-gases and Random Matrices. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  17. Forrester, P.J., Rains, E.M.: Interpretations of some parameter dependent generalizations of classical matrix ensembles. Prob. Theory Relat. Fields 131, 1–61 (2005). [arXiv:math-ph/0211042]

  18. Forrester, P.J., Wang, D.: Muttalib–Borodin ensembles in random matrix theory—realisations and correlation functions. Electron. J. Probab. 22, 54 (43 pages) (2017). [arXiv:1502.07147]

  19. Forrester, P.J., Zhang, J.: Co-rank \(1\) projections and the randomised Horn problem. Tunis. J. Math. 3(1), 55–73 (2021). [arXiv:1905.05314]

  20. Forrester, P.J., Ipsen, J.R., Liu, D.-Z., Zhang, L.: Orthogonal and symplectic Harish-Chandra integrals and matrix product ensembles. Random Matrices Theory Appl. 8(4), 1950015 (2019). https://doi.org/10.1142/S2010326319500151. [arXiv:1711.10691]

  21. Förster, Y.-P., Kieburg, M., Kösters, H.: Polynomial ensembles and Pólya frequency functions. J. Theor. Prob. 1–34 (2020). [arXiv:1710.08794]

  22. Frahm, K.: Equivalence of the Fokker–Planck approach and the nonlinear \(\sigma \) model for disordered wires in the unitary symmetry class. Phys. Rev. Lett. 74, 4706 (1995). [arXiv:cond-mat/9504027]

  23. Frumkin, A., Goldberger, A.: On the distribution of the spectrum of the sum of two Hermitian or real symmetric matrices. Adv. Appl. Math. 37, 268–286 (2006)

    Article  MathSciNet  Google Scholar 

  24. Fulton, W.: Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Am. Math. Soc. 37, 209–249 (2000). [arXiv:math.AG/9908012]

  25. Gelfand, I.M., Naĭmark, M.A.: (1950): Unitäre Darstellungen der klassischen Gruppen, Akademie-Verlag, Berlin (1957). Translated from Russian: Trudy Mat. Inst. Steklov. 36, 288

  26. Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Am. Math. Soc. 62 (1954)

  27. Gorin, V., Marcus, A.W.: Crystallization of random matrix orbits. Int. Math. Res. Not. (3), 883–913 (2020). [arXiv:1706.07393]

  28. Gorin, V., Sun, Y.: Gaussian fluctuations for products of random matrices (2018). [arXiv:1812.06532]

  29. Harish-Chandra: Differential operators on a semisimple Lie algebra. Am. J. Math. 87–120 (1957)

  30. Helgason, S.: Groups and Geometric Analysis: Radon Transforms, Invariant Differential Operators and Spherical Functions, vol. 1. Academic press, New York (1984)

    MATH  Google Scholar 

  31. Horn, A.: Eigenvalues of sums of Hermitian matrices. Pacific J. Math. 12, 225–241 (1962)

    Article  MathSciNet  Google Scholar 

  32. Ipsen, J.R., Schomerus, H.: Isotropic Brownian motions over complex fields as a solvable model for May-Wigner stability analysis. J. Phys. A 49, 385201 (2016). [arXiv:1602.06364]

  33. Itzykson, C., Zuber, J.-B.: The planar approximation. II. J. Math. Phys. 21, 411–421 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kieburg, M.: Products of complex rectangular and Hermitian random matrices. Adv. Pure Appl. Math. 11(1), 33–65 (2020). [arXiv:1908.09408]

  35. Kieburg, M., Guhr, T.: Derivation of determinantal structures for random matrix ensembles in a new way. J. Phys. A 43, 075201 (2010). [arXiv:0912.0654]

  36. Kieburg, M., Kösters, H.: Exact relation between singular value and eigenvalue statistics. Random Matrices Theory Appl. 5, 1650015 (2016). [arXiv:1601.02586]

  37. Kieburg, M., Kösters, H.: Products of random matrices from polynomial ensembles. Ann. Inst. Henri Poincaré Probab. Stat. 55(1), 98–126 (2019). [arXiv:1601.03724]

  38. Kieburg, M., Forrester, P.J., Ipsen, J.R.: Multiplicative convolution of real asymmetric and real antisymmetric matrices. Adv. Pure Appl. Math. 10(4), 467–492 (2019). [arXiv:1712.04916]

  39. King, R.C., Tollu, C., Toumazet, F.: The hive model and the polynomial nature of stretched Littlewood–Richardson coefficients. Séminaire Lotharingien de Combinatoire A 54, 1–19 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Klyachko, A.A.: Stable bundles, representation theory and Hermitian operators. Selecta Mathematica, New Series 4, 419–445 (1998)

    Article  MathSciNet  Google Scholar 

  41. Klyachko, A.A.: Random walks on symmetric spaces and inequalities for matrix spectra. Linear Algebra Appl. 319(1–3), 37–59 (2000)

    Article  MathSciNet  Google Scholar 

  42. Klyachko, A.A.: Quantum marginal problem and representations of the symmetric group (2004). [arXiv:quant-ph/0409113]

  43. Knutson, A.: The symplectic and algebraic geometry of Horn’s problem. Linear Algebra Appl. 319, 61–81 (2000). [arXiv:math.RA/9911088]

  44. Knutson, A., Tao, T.: Honeycombs and sums of Hermitian matrices. Notices Am. Math. Soc. 48, 175–186 (2001). [arXiv:math.RT/0009048]

  45. Kuijlaars, A.B.J., Román, P.: Spherical functions approach to sums of random Hermitian matrices. Int. Math. Res. Not. 2019(4), 1005–1029 (2017). [arXiv:1611.08932]

  46. Liechty, K., Wang, D.: Nonintersecting Browninan motion on the unit circle. Ann. Prob. 44, 1134–1211 (2016). [arXiv:1312.7390]

  47. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, Oxford University Press, Oxford (1995)

    Google Scholar 

  48. Mello, P.A., Pereyra, P., Kumar, N.: Macroscopic approach to multichannel disordered conductors. Ann. Phys. 181, 290 (1988)

    Article  ADS  Google Scholar 

  49. Muttalib, K.A.: Random matrix models with additional interactions. J. Phys. A 28, L159–L164 (1995). [arXiv:cond-mat/9405084]

  50. Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20, 47–87 (1956)

    MathSciNet  MATH  Google Scholar 

  51. Terras, A.: Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations, 2nd edn. Springer, New York (2016)

    MATH  Google Scholar 

  52. Zhang, L., Jiang, Y., Wu, J.: Duistermaat–Heckman measure and the mixture of quantum states. J. Phys. A 52(49), 495203 (2019). [arXiv:1810.02630]

  53. Zhang, L., Xiang, H.: A variant of Horn’s problem and the derivative principle. Linear Algebra Appl. 584, 79–106 (2020). [arXiv:1707.07264]

  54. Zuber, J.-B.: Horn’s problem and Harish-Chandra’s integrals: probability density functions. Ann. Inst. Henri Poincaré D 5, 309–338 (2018). [arXiv:1705.01186]

Download references

Acknowledgements

The work of PJF and JZ was supported by the Australian Research Council (ARC) through the ARC Centre of Excellence for Mathematical and Statistical frontiers (ACEMS). PJF also acknowledges partial support from ARC grant DP170102028, and JZ acknowledges the support of a Melbourne postgraduate award, and an ACEMS top up scholarship. We are grateful for fruitful discussions with Jesper R. Ipsen. We also thank Vadim Gorin for correspondence leading to the penultimate paragraph of the Introduction. And we also thank the referees for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyuan Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Kieburg, M. & Forrester, P.J. Harmonic analysis for rank-1 randomised Horn problems. Lett Math Phys 111, 98 (2021). https://doi.org/10.1007/s11005-021-01429-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01429-7

Keywords

Mathematics Subject Classification

Navigation