Skip to main content
Log in

Spatial decay of Kubo’s canonical correlation functions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Kubo’s canonical correlation functions (canonical correlators) describe the static response of a system in equilibrium to infinitesimal local perturbations. Knowing their decay properties with respect to spatial distance is important for many theoretical and experimental applications. For a thermal state of a system with short-range interactions, we prove that any knowledge of the decay rate of ordinary correlators readily translates into that of canonical correlators. As the former have been extensively studied, our result can lead to many new results on the latter. Throughout the paper, we use the framework of infinite-volume quantum lattice model. However, the method we use is adaptable for other physical scenarios not considered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. KMS stands for Kubo–Martin–Schwinger.

References

  1. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics, vol. 31. Springer, Berlin (2012)

    MATH  Google Scholar 

  2. Kliesch, M., Gogolin, C., Kastoryano, M.J., Riera, A., Eisert, J.: Locality of temperature. Phys. Rev. X 4(3), 031019 (2014)

    Google Scholar 

  3. Kapustin, A., Spodyneiko, L.: Absence of energy currents in an equilibrium state and chiral anomalies. Phys. Rev. Lett. 123(6), 060601 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Araki, H.: Gibbs states of a one dimensional quantum lattice. Commun. Math. Phys. 14(2), 120–157 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bricmont, J., Kupiainen, A.: High temperature expansions and dynamical systems. Commun. Math. Phys. 178(3), 703–732 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. Nachtergaele, B., Sims, R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265(1), 119–130 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Hastings, M.B., Koma, T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265(3), 781–804 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. Nachtergaele, B., Sims, R.: Locality estimates for quantum spin systems. In: New Trends in Mathematical Physics, pp. 591–614. Springer (2009)

  9. Nachtergaele, B., Sims, R.: Lieb–Robinson bounds in quantum many body physics. Contemp. Math. 529, 141–176 (2010)

    Article  MathSciNet  Google Scholar 

  10. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics Volume 1: C\(^*\)-and W\(^*\)-Algebras. Symmetry Groups. Decomposition of States. Springer, Berlin (2012)

    MATH  Google Scholar 

  11. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics Volume 2: Equilibrium States. Models in Quantum Statistical Mechanics (1997)

  12. Simon, B.: The Statistical Mechanics of Lattice Gases, vol. 260. Princeton University Press, Princeton (2014)

    Google Scholar 

  13. Naaijkens, P.: Quantum Spin Systems on Infinite Lattices. Springer, Berlin (2013)

    MATH  Google Scholar 

  14. Powers, R.T., Sakai, S.: Existence of ground states and KMS states for approximately inner dynamics. Commun. Math. Phys. 39(4), 273–288 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  15. Watanabe, H.: Insensitivity of bulk properties to the twisted boundary condition. Phys. Rev. B 98(15), 155137 (2018)

    Article  ADS  Google Scholar 

  16. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. In: Statistical Mechanics, pp. 425–431. Springer (1972)

  17. Hastings, M.B.: Locality in quantum systems. Quantum Theory Small Large Scales 95, 171–212 (2010)

    MATH  Google Scholar 

  18. Bravyi, S., Hastings, M.B., Verstraete, F.: Lieb–Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97(5), 050401050401 (2006)

    Article  ADS  Google Scholar 

  19. Walsh, J.L.: The Cauchy–Goursat theorem for rectifiable Jordan curves. Proc. Natl. Acad. Sci. USA 19(5), 540 (1933)

    Article  ADS  Google Scholar 

  20. Matsuta, T., Koma, T., Nakamura, S.: Improving the Lieb–Robinson bound for long-range interactions. Annales Henri Poincaré 18(2), 519–528 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude toward Anton Kapustin for suggesting the problem and for his invaluable guidance and support. I also thank Nathaniel Sagman, Tamir Hemo and Alexandre Perozim de Faveri for discussions on decay rates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B. Spatial decay of Kubo’s canonical correlation functions. Lett Math Phys 111, 97 (2021). https://doi.org/10.1007/s11005-021-01441-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01441-x

Keywords

Mathematics Subject Classification

Navigation