Skip to main content
Log in

Measurement of ‘closeness’ and Distinguishability of the Quantum States in Yang-Baxter Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Under the actions of different Hamiltonians on the different two-qubit input states by using the quantum Yang-Baxterization approach, we investigate the behaviors of the fidelity and the trace distance as measures of ‘closeness’ and distinguishability of two quantum states. The results show that the fidelity that is the main figure of merit for any communication and computing process can be kept to high values depending on the choice of the initial states and the Hamiltonians constructed by the Yang-Baxter equation. On the other hand, by choosing the initial states and Yang-Baxter systems which are the various extensions of the Yang-Baxter equations for several matrices, these quantifiers can be adjusted as desired to achieve many quantum computing and computational tasks. Furthermore, to quantify the performance of quantum teleportation we examine the teleportation fidelity for the outputs that correspond to the different two-qubit X-type states under the actions of the different Hamiltonians. It is possible to obtain high fidelity to use the quantum teleportation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Uhlmann, A.: The ”transition probability” in the state space of a ∗ -algebra. Rep. Math. Phys. 9(2), 273–279 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Jozsa, R.: Fidelity for Mixed Quantum States. J. Mod. Opt. 41, 2315–2323 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Liang, Y.-C., Yeh, Y.-H., Mendonça, P.E.M.F., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  5. Hayashi, M.: Quantum Information. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  6. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  7. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Kauffman, L.H., Lomonaco, Jr S.J.: Braiding operators are universal quantum gates. New J. Phys. 36, 134 (2004)

    Article  Google Scholar 

  9. Franko, J.M., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15, 413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal quantum gate, Yang-Baxterization and Hamiltonian. Int. J. Quant. Inf. 3, 669 (2005)

    Article  MATH  Google Scholar 

  11. Zhang, Y., Ge, M.L.: GHZ states, almost-complex structure and Yang-Baxter equation. Quant. Inf. Proc. 6, 363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z.H., Ge, M.L.: From extraspecial twogroups to GHZ states. arXiv:0706.1761 (2007)

  13. Chen, J.L., Xue, K., Ge, M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A 76, 042324 (2007)

    Article  ADS  Google Scholar 

  14. Chen, J.L., Xue, K., Ge, M.L.: Berry phase and quantum criticality in Yang-Baxter systems. Ann. Phys. 323, 2614 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chen, J.L., Xue, K., Ge, M.L.: All pure two-qudit entangled states generated via a universal Yang-Baxter matrix assisted by local unitary transformations. Chin. Phys. Lett. 26, 080306 (2009)

    Article  ADS  Google Scholar 

  16. Brylinski, J.L., Brylinski, R.: Universal quantum gates. In: Brylinski, R., Chen, G (eds.) Mathematics of Quantum Computation. Chapman Hall/CRC Press, Boca Raton (2002)

  17. Wang, G., Xue, K., Wu, C., Liang, H., Oh, C.H.: Entanglement and Berry phase in a new Yang-Baxter system. J. Phys. A Math. Theor. 42, 125207 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jones, V.F.R.: Baxterization. Int. J. Mod. Phys. A 6, 2035–2043 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ge, M.L., Xue, K., Wu, Y. -S.: Explicit trigonometric Yang-Baxterization. Int. J. Mod. Phys. A 6, 3735–3779 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hu, S.W., Xue, K., Ge, M.-L.: Optical simulation of the Yang-Baxter equation. Phys. Rev. A 78, 022319 (2008)

    Article  ADS  Google Scholar 

  21. Hu, T., Sun, C., Xue, K.: The sudden death of entanglement in constructed Yang-Baxter systems. Quant. Inf. Proc. 9, 27–35 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Friedel, L., Maillet, J.-M.: Quadratic algebras and integrable systems. Phys. Lett. B 262, 278–284 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  23. Nijhoff, F.W., Capel, H.W., Papageorgiou, V.G.: Integrable Quantum Mappings. Phys. Rev. A 46(4), 2155–2158 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  24. Hlavatý, L.: Quantized braided groups. J. Math. Phys. 35(5), 2560–2569 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Duran, D.: Action in hamiltonian models constructed by Yang-Baxter equation: Entanglement and measures of correlation. Chin. J. Phys. 68, 426–435 (2020)

    Article  MathSciNet  Google Scholar 

  26. Duran, D.: Dynamics of quantum Fisher information in the two-qubit systems constructed from the Yang-Baxter matrices. Quantum Inf Process 19, 332 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614 (1996)

    Article  ADS  Google Scholar 

  28. Molnár, L.: Fidelity preserving maps on density operators. Rep. Math. Phys. 48, 299–303 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wißmann, S., Breuer, H.-P., Vacchini, B.: Generalized trace-distance measure connecting quantum and classical non-Markovianity. Phys. Rev. A 92, 042108 (2015)

    Article  ADS  Google Scholar 

  30. Amato, G., Breuer, H.-P., Vacchini, B.: Generalized trace distance approach to quantum non-Markovianity and detection of initial correlations. Phys. Rev. A 98, 012120 (2018)

    Article  ADS  Google Scholar 

  31. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Yang, C.N.: S matrix for the one-dimensional N-body problem with repulsive or attractive δ-function interaction. Phys. Rev. 168, 1920 (1968)

    Article  ADS  Google Scholar 

  33. Baxter, R.J.: Partition function of the Eight-Vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  35. Jimbo, M.: Introduction to the Yang-Baxter equation. Int. J. Modern Phys. A 4(15), 3759–3777 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Temperley, H.N.V., Lieb, E.H.: Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proc. Roy. Soc. London A 322, 251–280 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Hu, S.W., Hu, M.G., Xue, K., Ge, M.L.: Linear optics implementation for Yang-Baxter equation. arXiv:0711.4703v2 (2007)

  38. Hayman, W.K.: Meromorphic functions (Oxford mathematical monographs). Oxford Clarendon Press, Oxford (1964)

    Google Scholar 

  39. Sun, C., Hu, T., Wu, C., Xue, K.: Thermal entanglement in the systems constructed from the Yang-Baxter R-matrix. Int. J. Quant. Inf. 7(5), 879–889 (2009)

    Article  MATH  Google Scholar 

  40. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  41. Hayashi, M., Markham, D., Murao, M., Owari, M., Virmani, S.: Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. Phys. Rev. Lett. 96, 040501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  42. Markham, D., Miszczak, J.A., Puchala, Z., Życzkowski, K.: Quantum state discrimination: A geometric approach. Phys. Rev. A 77, 042111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  43. Hübner, M.: Explicit computation of the Bures distance for density matrices. Phys. Lett. A 168(4), 239–242 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  44. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  46. Popescu, S.: Bell’s inequalities versus teleportation: What is nonlocality?. Phys. Rev. Lett. 72(6), 797–799 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21–25 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgun Duran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, D. Measurement of ‘closeness’ and Distinguishability of the Quantum States in Yang-Baxter Systems. Int J Theor Phys 60, 3087–3102 (2021). https://doi.org/10.1007/s10773-021-04888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04888-9

Keywords

Navigation