Skip to main content
Log in

Effects of Mold Rotation Speed and Cast Thickness on the Microstructure and Mechanical Properties of AZ80 Prepared by Centrifugal Casting

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Centrifugal casting is an accepted method for the large-scale production of alloys and composites products. However, up to now, very few studies have been done on the fabrication of the Mg alloys utilizing this technology, especially the higher aluminum containing magnesium alloys. Therefore, an investigation of parameters influencing the properties of the Mg alloys using this approach is necessary. This study aims to investigate the effects of centrifugal casting variables on the microstructure and mechanical properties of AZ80 magnesium (Mg) alloy. The samples were cast with different centrifugal speeds of 800, 1000, and 1200 rpm. After optimizing the centrifugal speed, the effect of thickness on the properties of the samples was investigated. Besides, the mechanical properties of the samples were evaluated using microhardness, tensile, and compression tests. The microstructure and fracture surfaces of samples were analyzed using optical microscopy (OM) and scanning electron microscopy (SEM) images. OM images indicated that the microstructure of samples was composed of α-Mg phase and γ-Mg17Al12 precipitates. A microstructural evolution was observed as a function of the diameter of the samples; i.e., the volume fraction of the γ-Mg17Al12 precipitates decreased by increasing the diameter of the specimens. The findings also illustrated that for all samples, the highest mechanical properties were achieved at the inner layers due to the presence of more γ-Mg17Al12 precipitates. On the other hand, the outer layers owing to their finer grains represented higher mechanical properties compared with the middle layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. X.L. Zhang, G.K. Yu, W.B. Zou, Y.S. Ji, Y.Z. Liu, J.L. Cheng, Effect of casting methods on microstructure and mechanical properties of ZM5 space flight magnesium alloy. Ch. Foundry 15, 418–421 (2018). https://doi.org/10.1007/s41230-018-8098-y

    Article  Google Scholar 

  2. D. Yin, L. Weng, J. Liu, J. Wang, Investigation of microstructure and strength of AZ80 magnesium alloy by ECAP and aging treatment. Met. Mater. 49, 37–42 (2011). https://doi.org/10.4149/km-2011-1-37

    Article  CAS  Google Scholar 

  3. S.J. Guo, Q.C. Le, Z.H. Zhao, J.Z. Cui, Microstructure character of AZ80 magnesium alloy ingots cast under electromagnetic vibration. Ch. Foundry 4, 22–25 (2007)

    CAS  Google Scholar 

  4. M. Asgari, F. Fereshteh-Saniee, Production of AZ80/Al composite rods employing non-equal channel lateral extrusion. Trans. Nonferr. Met. Soc. Ch. 26, 1276–1283 (2016). https://doi.org/10.1016/S1003-6326(16)64228-0

    Article  CAS  Google Scholar 

  5. A. Matin, F. Fereshteh-Saniee, H.R. Abedi, Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method. Mater. Sci. Eng. A 625, 81–88 (2015). https://doi.org/10.1016/j.msea.2014.11.050

    Article  CAS  Google Scholar 

  6. F. Pan, M. Yang, X. Chen, A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. J. Mater. Sci. Technol. 32, 1211–1221 (2016). https://doi.org/10.1016/j.jmst.2016.07.001

    Article  CAS  Google Scholar 

  7. J. Weiler, A review of magnesium die-castings for closure applications. J. Magnes. Alloy. 7(2), 297–304 (2019). https://doi.org/10.1016/j.jma.2019.02.005

    Article  CAS  Google Scholar 

  8. S. Zhu, M.A. Easton, T.B. Abbott, J.-F. Nie, M.S. Dargusch, N. Hort, M.A. Gibson, Evaluation of magnesium die-casting alloys for elevated temperature applications: microstructure tensile properties, and creep resistance. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 3543–3554 (2015). https://doi.org/10.1007/s11661-015-2946-9

    Article  CAS  Google Scholar 

  9. S.T. Manige, G.H. Gowd, B.C.M. Reddy, Processing of magnesium metal matrix composite reinforced with graphene nano platelets through vacuum stir casting and investigating its mechanical behaviour. J. Thin. Films. 5, 21–29 (2019)

    Google Scholar 

  10. P. Prakash, A. Hadadzadeh, S.K. Shaha, M.A. Whitney, M.A. Wells, H. Jahed, B.W. Williams, Microstructure and texture evolution during hot compression of cast and extruded AZ80 magnesium alloy, in Magnesium Technology (2019), pp. 89–94. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3-15

  11. A. Vajd, A. Samadi, Optimization of centrifugal casting parameters to produce the functionally graded Al–15wt%Mg2Si composites with higher tensile properties. Inter. Metalcast. 14, 937–948 (2020). https://doi.org/10.1007/s40962-019-00394-1

    Article  CAS  Google Scholar 

  12. M. Yousefi, H. Doostmohammadi, Microstructural evolution and solidification behavior of functionally graded in situ Al–Cr composites during centrifugal casting. Inter. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00499-y

    Article  Google Scholar 

  13. A. Mehditabar, G.H. Rahimi, M. Krol et al., Effect of heat treatment on the characterizations of functionally graded Al/Al2Cu fabricated by horizontal centrifugal casting. Inter. Metalcast. 14, 962–976 (2020). https://doi.org/10.1007/s40962-019-00401-5

    Article  CAS  Google Scholar 

  14. J.W. Liu, X.D. Peng, D.S. Chen, H.Y. Yi, Y.Q. Yu, Microstructure and mechanical properties of centrifugal casting of AZ31B magnesium alloy ring. Mater. Res. Innov. 18, S164–S169 (2014). https://doi.org/10.1179/1432891714Z.000000000675

    Article  CAS  Google Scholar 

  15. N.E. Prasad, V. Nimbalkar, B. Rao, V. Deshmukh, K. Marathe, Centrifugal casting of nano crystalline TiB2 reinforcement particulate reinforcement in Al-Alloy matrix. Int .J. Miner. Metall. Mater. 3, 7–13 (2019)

    Google Scholar 

  16. H. Naik, M. Gandhi, M. Patel, R. Prajapati, Effect of centrifugal force and speed in casting of aluminium alloy–a review, IJDI-ERET, (2018)

  17. D. Luo, H.-Y. Wang, Z.-T. Ou-Yang, L. Chen, J.-G. Wang, Q.-C. Jiang, Microstructure and mechanical properties of Mg–5Sn alloy fabricated by a centrifugal casting method. Mater. Lett. 116, 108–111 (2014). https://doi.org/10.1016/j.matlet.2013.10.092

    Article  CAS  Google Scholar 

  18. X.-F. Zhu, B.-Y. Yu, L. Zheng, B.-N. Yu, Q. Li, S.-N. Lü, H. Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting. Ch. Foundry 15, 196–202 (2018). https://doi.org/10.1007/s41230-018-7256-6

    Article  Google Scholar 

  19. R. Fathi, A. Ma, B. Saleh, Q. Xu, J. Jiang, Investigation on mechanical properties and wear performance of functionally graded AZ91-SiCp composites via centrifugal casting. Mater. Today Commun. 24, 101169 (2020). https://doi.org/10.1016/j.mtcomm.2020.101169

    Article  CAS  Google Scholar 

  20. B. Saleh, J. Jiang, R. Fathi, Q. Xu, Y. Li, A. Ma, Influence of gradient structure on wear characteristics of centrifugally cast functionally graded magnesium matrix composites for automotive applications. Arch. Civ. Mech. Eng. 21, 1–23 (2021). https://doi.org/10.1007/s43452-020-00168-1

    Article  Google Scholar 

  21. ASTM Standard B91, S.s.f.m.a.f., ASTM International, West Conshohocken, PA, (2004)

  22. ASTM E407, Standard practice for microetching metals and alloys

  23. ASTM E384, Standard test method for microindentation hardness of materials

  24. ASTM E8, Standard test methods for tension testing of metallic materials

  25. S. Saha, C. Ravindran, Grain refinement of AZ91E and Mg-9 WT.% Al binary alloys using zinc oxide. Inter. Metalcast. 9, 33–42 (2015). https://doi.org/10.1007/BF03355600

    Article  Google Scholar 

  26. A. Azad, L. Bichler, A. Elsayed, Effect of a novel Al-SiC grain refiner on the microstructure and properties of AZ91E magnesium alloy. Inter. Metalcast. 7, 49–59 (2013). https://doi.org/10.1007/BF03355564

    Article  CAS  Google Scholar 

  27. A. Luo, A. Sachdev, Microstructure and mechanical properties of magnesium-aluminum-manganese cast alloys. Inter. Metalcast. 4, 51–59 (2010). https://doi.org/10.1007/BF03355502

    Article  CAS  Google Scholar 

  28. T.-J. Luo, H.-M. Ji, J. Cui, F.-Z. Zhao, X.-H. Feng, Y.-J. Li, Y.-S. Yang, As-cast structure and tensile properties of AZ80 magnesium alloy DC cast with low-voltage pulsed magnetic field. Trans. Nonferrous Met. Soc. Ch. 25, 2165–2171 (2015). https://doi.org/10.1016/S1003-6326(15)63828-6

    Article  CAS  Google Scholar 

  29. P. Palai, N. Prabhu, P.D. Hodgson, B.P. Kashyap, Grain growth and β-Mg17Al12 intermetallic phase dissolution during heat treatment and its impact on deformation behavior of AZ80 Mg-Alloy. J. Mater. Eng. Perform. 23, 77–82 (2013). https://doi.org/10.1007/s11665-013-0722-9

    Article  CAS  Google Scholar 

  30. D. Zhao, Z. Wang, M. Zuo, H. Geng, Effects of heat treatment on microstructure and mechanical properties of extruded AZ80 magnesium alloy. Mater. Des. 56, 589–593 (2014). https://doi.org/10.1016/j.matdes.2013.11.072

    Article  CAS  Google Scholar 

  31. K. Kadali, D. Dubey, R. Sarvesha, H. Kancharla, J. Jain, K. Mondal, S.S. Singh, Dissolution kinetics of Mg17 Al12 eutectic phase and its effect on corrosion behavior of As-cast AZ80 magnesium alloy. JOM 71, 2209–2218 (2019). https://doi.org/10.1007/s11837-019-03470-3

    Article  CAS  Google Scholar 

  32. Q. Chen, J. Lin, H. Zhan, S. Huang, D. Shu, B. Yuan, Microstructure evolution and mechanical properties of large-scale AZ80 magnesium alloy billets produced by multitemperature multidirectional forging. J. Mater. Eng. Perform. 28, 3498–3504 (2019). https://doi.org/10.1007/s11665-019-04096-x

    Article  CAS  Google Scholar 

  33. I. El-Galy, M. Ahmed, B. Bassiouny, Characterization of functionally graded Al-SiCp metal matrix composites manufactured by centrifugal casting. Alex. Eng. J. 56, 371–381 (2017). https://doi.org/10.1016/j.aej.2017.03.009

    Article  Google Scholar 

  34. E. Jayakumar, A. Praveen, T. Rajan, B. Pai, Studies on tribological characteristics of centrifugally cast SiCp-reinforced functionally graded A319 aluminium matrix composites. Trans. Indian Inst. Met. 71, 2741–2748 (2018). https://doi.org/10.1007/s12666-018-1442-5

    Article  CAS  Google Scholar 

  35. X. Lin, C. Liu, H. Xiao, Fabrication of Al–Si–Mg functionally graded materials tube reinforced with in situ Si/Mg2Si particles by centrifugal casting. Compos. B. Eng. 45, 8–21 (2013). https://doi.org/10.1016/j.compositesb.2012.09.001

    Article  CAS  Google Scholar 

  36. B.I. Saleh, M.H. Ahmed, Development of functionally graded tubes based on pure Al/Al2O3 metal matrix composites manufactured by centrifugal casting for automotive applications. Met. Mater. Int. 26, 933–960 (2020). https://doi.org/10.1007/s12540-019-00491-0

    Article  CAS  Google Scholar 

  37. Y.-B. Zhai, C.-M. Liu, K. Wang, M.-H. Zou, Y. Xie, Characteristics of two Al based functionally gradient composites reinforced by primary Si particles and Si/in situ Mg2Si particles in centrifugal casting. Trans. Nonferrous Met. Soc. 20, 361–370 (2010). https://doi.org/10.1016/S1003-6326(09)60147-3

    Article  CAS  Google Scholar 

  38. J.W. Gao, C.Y. Wnag, Modeling the solidification of functionally graded materials by centrifugal casting. Mater. Sci. Eng. A 292, 207–215 (2000). https://doi.org/10.1016/S0921-5093(00)01014-5

    Article  Google Scholar 

  39. N. Hansen, Hall-Petch relation and boundary strengthening. Scr. Mater. 51, 801–806 (2004). https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  CAS  Google Scholar 

  40. X.-Y. Chen, Y. Zhang, Y.-L. Lu, X.-P. Li, Microstructure and mechanical properties of AZ91-Ca magnesium alloy cast by different processes. Ch. Foundry 15, 263–269 (2018). https://doi.org/10.1007/s41230-018-8018-1

    Article  Google Scholar 

  41. P.G. Mukunda, R.A. Shailesh, S.R. Shrikantha, Influence of rotational speed of centrifugal casting process on appearance, microstructure, and sliding wear behaviour of Al-2Si cast alloy. Met. Mater. Int. 16, 137–143 (2010). https://doi.org/10.1007/s12540-010-0137-1

    Article  CAS  Google Scholar 

  42. S. Ilangovan, S. Viswanathan, G. Niranthar, Study of effect of cooling rate on mechanical and tribological properties of cast Al–6.5 Cu aluminium alloy. Int. J. Res. Eng. Technol. 3, 62–66 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Arabi-Nour or F. Fereshteh-Saniee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabi-Nour, M., Fereshteh-Saniee, F. Effects of Mold Rotation Speed and Cast Thickness on the Microstructure and Mechanical Properties of AZ80 Prepared by Centrifugal Casting. Inter Metalcast 16, 894–908 (2022). https://doi.org/10.1007/s40962-021-00651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00651-2

Keywords

Navigation