Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access December 31, 2019

A simulation-based approach to evaluate objective material parameters from concrete rheometer measurements

  • Florian Gerland EMAIL logo , Alexander Wetzel , Thomas Schomberg , Olaf Wünsch and Bernhard Middendorf
From the journal Applied Rheology

Abstract

Modern concretes such as ultra-high performance concrete (UHPC) show excellent strength properties combined with favorable flow properties. However, the flow properties depend strongly on process parameters during production (temperature, humidity etc.), but also change sensitively even with slight variations in the mixture. In order to ensure desired processing of the fluidlike material and consistent process quality, the flow properties of the concrete must be evaluated quantitatively and objectively. The usual evaluation of measurements from concrete rheometers, for example of the ball probe system type, does not allow the direct determination of the objective material parameters yield stress and plastic viscosity of the sample. We developed a simulation-based method for the evaluation of rheometric measurements of fine grained high performance concretes like self-compacting concrete (SCC) and UHPC. The method is based on a dimensional analysis for ball measuring systems. Through numerical parameter studies we were able to describe the identified relationship between measuring quantities and material parameters quantitatively for two devices of this type. The evaluation method is based on the Bingham model. With this method it is possible to measure both the yield stress and the plastic viscosity of the fresh sample simultaneously. Device independence of the evaluation process is proven and an application to fiber-reinforced UHPC is presented.

References

[1] Golaszewski J., Cygan G., and Golaszewska M., Repeatability and reproducibility of measurement of rheological parameters of fresh mortars and concretes, In Tagungsband zum 27. Workshop und Kolloqium(7-8 March 2018, Regensburg, Germany), Regensburg, 2018, 66–95, (in German).Search in Google Scholar

[2] Ferraris C., Geiker M., Martys N.S., Muzzatti N., Parallel-plate Rheometer Calibration Using Oil and Computer Simulation, J. Adv. Concr. Technol., 2007, 5(3), 363–371.10.3151/jact.5.363Search in Google Scholar

[3] Feys D., Cepuritis R., Jacobsen S., Lesage K., Secrieru E., Yahia A., Measuring rheological properties of cement pastes, Most common techniques, procedures and challenges, RILEM Tech. Let., 2017, 2, 129–135.10.21809/rilemtechlett.2017.43Search in Google Scholar

[4] Roussel N. (Ed.), Understanding the rheology of concrete, Wood-head Publ., Oxford, 201210.1533/9780857095282Search in Google Scholar

[5] Heese Ch., Simulation des rheologischen Verhaltens von zementgebundenen Feinkornsystemen. PhD thesis, TU Kaiserslautern, Kaiserslautern, Germany, 2014, (in German)Search in Google Scholar

[6] Fleischmann F., Kusterle W., Neues Rheometer zur Bestimmung der Frischbetoneigenschaften von selbstverdichtenden Betonen, Bet. - Verl. Bau + Tech., 2014, 64(9), 330–337, (in German).Search in Google Scholar

[7] Fleischmann F., Ein Beitrag zur Bestimmung der rheologischen Eigenschaften Selbstverdichtender Betone mit dem Kugel-Messsystem. PhD thesis, Ruhr-Universität Bochum, Regensburg, Germany, 2014, (in German)Search in Google Scholar

[8] Wünsch O., Experimentelle Bestimmung Binghamscher Stoffparameter, Rheol. Acta, 1990, 29(2), 163–169, (in German).10.1007/BF01332383Search in Google Scholar

[9] Oliva A.M., Hargrave N.R., Feys D., Park J., Simulation of Yield-Stress Fluid in a Rotational Rheometer: The Effect of Vane Geometry on the Accuracy of Measured Properties, In: Proceedings of the 2015 COMSOL Conference in Boston, Boston, 2015.Search in Google Scholar

[10] Zhu H., Martys N.S., Ferraris C., De Kee D., A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics (SPH) based method, J. Non-Newtonian Fluid Mech., 2010, 165(7–8), 362–375.10.1016/j.jnnfm.2010.01.012Search in Google Scholar

[11] Le H.D., De Schutter G., Kadri E.H., Aggoun S., Vierendeels J., Tichko S., et al., Computational fluid dynamics calibration of Tattersall MK-II type rheometer for concrete, Appl. Rheol., 2013, 23(3).Search in Google Scholar

[12] Wallevik O.H., Feys D., Wallevik J.E., Khayat K.H., Avoiding inaccurate interpretations of rheological measurements for cement-based materials, Cem. Concr. Res., 2015, 78, 100 – 109.10.1016/j.cemconres.2015.05.003Search in Google Scholar

[13] Liu B.T., Muller S.J., Denn M.M., Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere, J. Non-Newtonian Fluid Mech., 2002, 102(2), 179–191.10.1016/S0377-0257(01)00177-XSearch in Google Scholar

[14] Wallewik J.E., Krenzer K., Schwabe J.H., Numerical Errors in CFD and DEM Modeling, In: Roussel N., Gram A. (Eds.), Simulation of Fresh Concrete Flow, Springer, Dordrecht, 201410.1007/978-94-017-8884-7_4Search in Google Scholar

[15] Schmidt M., Fehling E., Fröhlich S. (Eds.), Nachhaltiges Bauen mit ultra-hochfestem Beton - Ergebnisse des Schwerpunktprogrammes 1182, Number 22 in Schriftenreihe Baustoffe und Massivbau, Kassel Univ. Press, Kassel, 2014, (in German)Search in Google Scholar

[16] Durst F., Grundlagen der Strömungsmechanik - Eine Einführung in die Theorie der Strömung von Fluiden, Springer, Heidelberg, 2006, (in German)Search in Google Scholar

[17] Martinie L., Rossi P., Roussel N., Rheology of fiber reinforced cementitious materials - Classification and prediction, Cem. Concr. Res., 2010, 40(2), 226–234.10.1016/j.cemconres.2009.08.032Search in Google Scholar

[18] Kolařík F., Patzák B., Thrane L.N., Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete, Comput. Struct., 2015, 154, 91–100.10.1016/j.compstruc.2015.03.007Search in Google Scholar

[19] Roussel N., A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem. Concr. Res., 2006, 36(10), 1797–1806.10.1016/j.cemconres.2006.05.025Search in Google Scholar

Received: 2019-07-23
Accepted: 2019-09-09
Published Online: 2019-12-31

© 2019 Florian Gerland et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/arh-2019-0012/html
Scroll to top button