Skip to main content
Log in

Non-local imprints of gravity on quantum theory

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

During the last two decades or so much effort has been devoted to the discussion of quantum mechanics (QM) that in some way incorporates the notion of a minimum length. This upsurge of research has been prompted by the modified uncertainty relation brought about in the framework of string theory. In general, the implementation of minimum length in QM can be done either by modification of position and momentum operators or by restriction of their domains. In the former case we have the so called soccer-ball problem when the naive classical limit appears to be drastically different from the usual one. Starting with the latter possibility, an alternative approach was suggested in the form of a band-limited QM. However, applying momentum cutoff to the wave-function, one faces the problem of incompatibility with the Schrödinger equation. One can overcome this problem in a natural fashion by appropriately modifying Schrödinger equation. But incompatibility takes place for boundary conditions as well. Such wave-function cannot have any more a finite support in the coordinate space as it simply follows from the Paley–Wiener theorem. Treating, for instance, the simplest quantum-mechanical problem of a particle in an infinite potential well, one can no longer impose box boundary conditions. In such cases, further modification of the theory is in order. We propose a non-local modification of QM, which has close ties to the band-limited QM, but does not require a hard momentum cutoff. In the framework of this model, one can easily work out the corrections to various processes and discuss further the semi-classical limit of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wigner, E.P.: The basic conflict between the concepts of general relativity and of quantum mechanics. In: Wightman, A.S. (ed.) The Collected Works of Eugene Paul Wigner, vol. III, p. 350. Springer, Heidelberg (1997)

  2. Witten, E.: Unravelling string theory. Nature 438, 1085 (2005)

    Article  ADS  Google Scholar 

  3. Zwiebach, B.: A First Course in String Theory. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Witten, E.: What every physicist should know about string theory. Phys. Today 68(11), 38–43 (2015)

    Article  Google Scholar 

  5. Ashtekar, A., Bianchi, E.: A short review of loop quantum gravity. Rep. Prog. Phys. 84, 042001 (2021)

    Article  ADS  Google Scholar 

  6. Gambini, R., Pullin, J.: A First Course in Loop Quantum Gravity. Oxford University Press, Oxford (2011)

    Book  MATH  Google Scholar 

  7. Amelino-Camelia, G.: Doubly-special relativity: facts, myths and some key open issues. Symmetry 2, 230–271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  9. Tawfik, A.N., Diab, A.M.: Review on generalized uncertainty principle. Rep. Prog. Phys. 78, 126001 (2015)

    Article  ADS  Google Scholar 

  10. Ali, A.F., Das, S., Vagenas, E.C.: Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 678, 497–499 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bosso, P.: Rigorous Hamiltonian and Lagrangian analysis of classical and quantum theories with minimal length. Phys. Rev. D 97, 126010 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  12. Diósi, L.: Gravitation and quantum mechanical localization of macroobjects. Phys. Lett. A 105, 199–202 (1984)

    Article  ADS  Google Scholar 

  13. Bahrami, M., Großardt, A., Donadi, S., Bassi, A.: The Schröedinger–Newton equation and its foundations. New J. Phys. 16, 115007 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Gisin, N.: Stochastic quantum dynamics and relativity. Helv. Phys. Acta 62, 363–371 (1989)

    MathSciNet  Google Scholar 

  15. Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145–166 (1995)

    Article  ADS  Google Scholar 

  16. Wheeler, J.A.: Geons. Phys. Rev. 97, 511–536 (1955)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Wheeler, J.A.: On the Nature of quantum geometrodynamics. Ann. Phys. 2, 604–614 (1957)

    Article  MATH  ADS  Google Scholar 

  18. Wheeler, J.A.: Geometrodynamics and the issue of final state. In: DeWitt, C., DeWitt, B. (eds.) Les Houches Summer Shcool of Theoretical Physics: Relativity, Groups and Topology, pp. 317–522. Gordon and Breach Science Publishers, New York (1964)

    Google Scholar 

  19. Hawking, S.W.: Space-time foam. Nucl. Phys. B 144, 349–362 (1978)

    Article  ADS  Google Scholar 

  20. Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38–41 (1947)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Blokhintsev, D.: Space and Time in the Microworld. Reidel Publishing Company, Dordrecht (1973)

    Book  MATH  Google Scholar 

  22. Bombelli, L., Lee, L., Meyer, D., Sorkin, R.: Space-time as a causal set. Phys. Rev. Lett. 59, 521–524 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  23. Chung, W.S., Hassanabadi, H.: New generalized uncertainty principle from the doubly special relativity. Phys. Lett. B 785, 127–131 (2018)

    Article  MATH  ADS  Google Scholar 

  24. Petruzziello, L.: Generalized uncertainty principle with maximal observable momentum and no minimal length indeterminacy. arXiv:2010.05896 [hep-th]

  25. Brillouin, L.: Science and Information Theory. Dover Publications, New York (2004)

    MATH  Google Scholar 

  26. Kempf, A.: Spacetime could be simultaneously continuous and discrete in the same way that information can. New J. Phys. 12, 115001 (2010)

    Article  ADS  Google Scholar 

  27. Sailer, K., Péli, Z., Nagy, S.: Some consequences of the generalized uncertainty principle induced ultraviolet wave-vector cutoff in one-dimensional quantum mechanics. Phys. Rev. D 87, 084056 (2013)

    Article  ADS  Google Scholar 

  28. Hossenfelder, S.: The Soccer-Ball problem. SIGMA 10, 074 (2014)

    MathSciNet  Google Scholar 

  29. Quesne, C., Tkachuk, V.: Composite system in deformed space with minimal length. Phys. Rev. A 81, 012106 (2010)

    Article  ADS  Google Scholar 

  30. Tkachuk, V.: Deformed Heisenberg algebra with minimal length and equivalence principle. Phys. Rev. A 86, 062112 (2012)

    Article  ADS  Google Scholar 

  31. Todorinov, V., Bosso, P., Das, S.: Relativistic generalized uncertainty principle. Ann. Phys. 405, 92–100 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Chargui, Y.: Comments on the paper “Relativistic generalized uncertainty principle.” Ann. Phys. 412, 168007 (2020)

  33. Amelino-Camelia, G., Astuti, V., Palmisano, M., Ronco, M.: Multi-particle systems in quantum spacetime and a novel challenge for center-of-mass motion. Int. J. Mod. Phys. D 30, 2150046 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  34. Bosso, P., Das, S.: Lorentz invariant mass and length scales. Int. J. Mod. Phys. D 28, 1950068 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  35. Sailer, K., Péli, Z., Nagy, S.: Particle in a cavity in one-dimensional bandlimited quantum mechanics. J. Phys. A 48, 075305 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Price, J.F.: Uncertainty principles and sampling theorems. In: Price, J.F. (ed.) Fourier Techniques and Applications, pp. 25–44. Plenum Press, New York (1985)

    Chapter  Google Scholar 

  37. Elze, H.T.: Action principle for cellular automata and the linearity of quantum mechanics. Phys. Rev. A 89, 012111 (2014)

    Article  ADS  Google Scholar 

  38. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25, 379–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Landau, H.,J.: An overview of the time and frequency limiting. In: Price, J.F. (ed.) Fourier Techniques and Applications, pp. 201–220. Plenum Pres, New York (1985)

  40. Casher, A., Nussinov, S.: Some speculations on the ultimate Planck energy accelerators. arXiv:hep-ph/9510364

  41. Casher, A., Nussinov, S.: Is the Planck momentum attainable? arXiv:hep-th/9709127

  42. Elze, H.T.: Quantum features of natural cellular automata. J. Phys. Conf. Ser. 701, 012017 (2016)

    Article  Google Scholar 

  43. Elze, H.T.: Quantum models as classical cellular automata. J. Phys. Conf. Ser. 845, 012022 (2017)

    Article  Google Scholar 

  44. Wilcox, R.M.: Exponential operators and parameter differential in quantum physics. J. Math. Phys. 8, 962–982 (1967)

    Article  MATH  ADS  Google Scholar 

  45. Casas, F., Murua, A., Nadinic, M.: Efficient computation of the Zassenhaus formula. Comput. Phys. Commun. 183, 2386–2391 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Quesne, C.: Disentangling q exponentials: a general approach. Int. J. Theor. Phys. 43, 545–559 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nauenberg, M.: Einstein’s equivalence principle in quantum mechanics revisited. Am. J. Phys. 84, 879–882 (2016)

    Article  ADS  Google Scholar 

  48. Sen, A., Dhasmana, S., Silagadze, Z.K.: Free fall in KvN mechanics and Einstein’s principle of equivalence. Ann. Phys. 422, 168302 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nesvizhevsky, V.V., Borner, H.G., Petukhov, A.K., Abele, H., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002)

    Article  ADS  Google Scholar 

  50. Ghosh, S.: Quantum gravity effects in geodesic motion and predictions of equivalence principle violation. Class. Quant. Grav. 31, 025025 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Perey, F., Buck, B.: A non-local potential model for the scattering of neutrons by nuclei. Nucl. Phys. 32, 353–380 (1962)

    Article  MATH  Google Scholar 

  52. Hohlfeld, R.G., King, J.I.F., Drueding, T.W., Sandri, G.V.H.: Solution of convolution integral equations by the method of differential inversion. SIAM J. Appl. Math. 53, 154–167 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. Hattab, H.E., Polonyi, J.: Renormalization group transformation for the wave function. Ann. Phys. 268, 246–272 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. Liao, S.B., Polonyi, J.: Blocking transformation in field theory. Ann. Phys. 222, 122–156 (1993)

    Article  ADS  Google Scholar 

  55. Ulmer, W., Kaissl, W.: The inverse problem of a Gaussian convolution and its application to the finite size of the measurement chambers/detectors in photon and proton dosimetry. Phys. Med. Biol. 48, 707–727 (2003)

    Article  Google Scholar 

  56. Ulmer, W.: Inverse problem of linear combinations of Gaussian convolution kernels (deconvolution) and some applications to proton/photon dosimetry and image processing. Inverse Prob. 26, 085002 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. Grad, H.: Note on N-dimensional Hermite polynomials. Commun. Pure Appl. Math. 2, 325–330 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  58. Holmquist, B.: The d-Variate Vector Hermite Polynomial of Order k. Linear Algebra Appl. 237–238, 155–190 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  59. Balescu, R.: Transport Processes in Plasmas. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  60. Pfefferlé, D., Hirvijoki, E., Lingam, M.: Exact collisional moments for plasma fluid theories. Phys. Plasmas 24, 042118 (2017)

    Article  ADS  Google Scholar 

  61. Horiuchi, H.: A semiclassical treatment of nonlocal potentials. Prog. Theor. Phys. 64, 184–203 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  62. Takigawa, N., Hara, K.: A treatment of the non-local exchange potential in the classical theory of heavy ion reactions. Z. Phys. A 276, 79–83 (1976)

    Article  ADS  Google Scholar 

  63. Horiuchi, H.: A study of the Perey effect by the WKB method. Prog. Theor. Phys. 63, 725–729 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  64. Gnatenko, K.P., Tkachuk, V.: Minimal length estimation on the basis of studies of the Sun–Earth–Moon system in deformed space. Int. J. Mod. Phys. D 28, 1950107 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. Silagadze, Z.K.: Quantum gravity, minimum length and Keplerian orbits. Phys. Lett. A 373, 2643–2645 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  66. Maziashvili, M., Megrelidze, L.: Minimum-length deformed quantum mechanics/quantum field theory, issues, and problems. PTEP 2013(12), 123B06 (2013)

  67. Maziashvili, M.: Macroscopic detection of deformed QM by the harmonic oscillator. Ann. Phys. 383, 545–549 (2017)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgements

This work has benefited from conversations with Zurab Kepuladze. We are also indebted to Hans-Thomas Elze for useful e-mail correspondences. The work of Z.K.S. is supported by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Maziashvili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maziashvili, M., Silagadze, Z.K. Non-local imprints of gravity on quantum theory. Gen Relativ Gravit 53, 67 (2021). https://doi.org/10.1007/s10714-021-02838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02838-8

Keywords

Navigation