Skip to main content

Advertisement

Log in

Theoretical Exploration of Thermal Transportation with Lorentz Force for Fourth-Grade Fluid Model Obeying Peristaltic Mechanism

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The heat transfer phenomenon plays an imperative role in several biological and industrial processes, like the oil production industries, catalytic reactors, energy losses in several thermal systems, energy storage, papers manufacture and heat exchanger systems. Therefore, the present analysis investigates the heat transfer phenomena on peristaltic transportation of the hydromagnetic flow of non-Newtonian fourth-grade fluid in a tapered asymmetric channel filled with porous media. Moreover, the impacts of heat source/sink and thermal radiation in modeling are retained. The tapered asymmetry in the channel is generated by undertaking the peristaltic wave train inflicted on the non-uniform walls to have altered phases and amplitudes. The analysis is originated by adopting suppositions of long wavelength \(\left( {\delta < < 1} \right)\), small Deborah number \(\left( {\Gamma \to 0} \right)\) and low Reynolds number \(\left( {\text{R} \to 0} \right)\). A regular perturbation technique is utilized to acquire the series outcomes for the axial velocity, pressure gradient and streamlines distribution, while an analytical outcome has been acquired for the thermal profile. The pressure rise at each wavelength on the channel walls has been numerically computed. Impacts of arising parameters in the analysis are surveyed graphically. Outcomes divulge that magnitude of the axial velocity raises with a rise of Darcy number. In contrast, it diminishes with a raise of the magnetic parameter near the center of the channel. Furthermore, the calculated outcomes are found in admirable agreement with the outcomes acquired by the finite element technique and previously published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(A_{1}\) :

First Rivlin–Ericksen tensor \(\left[ - \right]\)

\(\bar{X},\,\,\bar{Y}\) :

Space coordinates in laboratory frame \(\left[ m \right]\)

\(\bar{P},p\) :

Pressure in the laboratory and wave frame \(\left[ {kg/s^{2} } \right],\left[ - \right]\)

\(\bar{U},\bar{V}\) :

Velocity components in laboratory frame \(\left[ {ms^{{ - 1}} } \right]\)

\(c\) :

Wave speed \(\left[ {ms^{{ - 1}} } \right]\)

\(t\) :

Time \(\left[ s \right]\)

\(u,v\) :

Velocity components in wave frame \(\left[ {ms^{{ - 1}} } \right]\)

\(Q_{0}\) :

Heat generation parameter \(\left[ {m^{2} s^{{ - 3}} } \right]\)

\(T_{0} ,\,\,T_{1}\) :

Temperature at upper and lower walls \(\left( K \right)\)

\(d\) :

Channel half width \(\left[ m \right]\)

\(a_{1} ,\,\,a_{2}\) :

Wave amplitude at upper and lower walls \(\left[ m \right]\)

\(B\) :

Heat source/sink parameter \(\left[ { = {{Q_{0} d^{2} } \mathord{\left/ {\vphantom {{Q_{0} d^{2} } {k\left( {T_{1} - T_{0} } \right)}}} \right. \kern-\nulldelimiterspace} {k\left( {T_{1} - T_{0} } \right)}}} \right],\left[ - \right]\)

\(Da\) :

Darcy number \(\left[ { = {K \mathord{\left/ {\vphantom {K {d^{2} }}} \right. \kern-\nulldelimiterspace} {d^{2} }}} \right],\left[ - \right]\)

\(\Pr\) :

Prandtl number \(\left[ { = {{\mu C_{p} } \mathord{\left/ {\vphantom {{\mu C_{p} } k}} \right. \kern-\nulldelimiterspace} k}} \right],\left[ - \right]\)

\(m\) :

Non-uniform parameter of the channel \(\left[ - \right]\)

\(\bar{T}\) :

Temperature in laboratory frame \(\left( K \right)\)

\(R\) :

Radiation parameter \(\left[ { = {{16T_{\infty }^{3} \sigma ^{ * } } \mathord{\left/ {\vphantom {{16T_{\infty }^{3} \sigma ^{ * } } {3k^{ * } k}}} \right. \kern-\nulldelimiterspace} {3k^{ * } k}}} \right],\left[ - \right]\)

\(Q\) :

Time average of the flow

\(M\) :

Magnetic parameter \(\left[ { = \sqrt {{\sigma \mathord{\left/ {\vphantom {\sigma \mu }} \right. \kern-\nulldelimiterspace} \mu }} B_{0} d} \right],\left[ - \right]\)

\(C_{p}\) :

Specific heat \(\left[ {Jkg^{{ - 1}} K^{{ - 1}} } \right]\)

\(g\) :

Acceleration due to gravity \(\left[ {LT^{{ - 2}} } \right]\)

\(\Delta p\) :

Pressure rise \(\left[ - \right]\)

\(\text{R}\) :

Reynold’s number \(\left[ { = {{\rho cd_{1} } \mathord{\left/ {\vphantom {{\rho cd_{1} } \mu }} \right. \kern-\nulldelimiterspace} \mu }} \right]\)

\(B_{0}\) :

Strength of magnetic field \(\left[ T \right]\)

\(\bar{x},\,\,\bar{y}\) :

Space coordinates in wave frame \(\left[ m \right]\)

\(A_{n}\) :

Rivlin–Ericksen tensor for \(n > 1\)\(\left[ - \right]\)

\(G_{r}\) :

Grashof number \(\left[ { = {{\rho g\beta _{T} d^{2} \left( {T_{1} - T_{0} } \right)} \mathord{\left/ {\vphantom {{\rho g\beta _{T} d^{2} \left( {T_{1} - T_{0} } \right)} {\mu c}}} \right. \kern-\nulldelimiterspace} {\mu c}}} \right],\left[ - \right]\)

\(q_{r}\) :

Radiative thermal heat flux \(\left[ {Wm^{{ - 2}} } \right]\)

\(k^{ * }\) :

Mean absorption coefficient \(\left[ {KW^{{ - 1}} } \right]\)

\(\beta _{T}\) :

Thermal expansion coefficient \(\left[ {K^{{ - 1}} } \right]\)

\(\theta\) :

Time mean flow rate in fixed frame \(\left[ - \right]\)

\(\phi\) :

Phase difference \(\left[ {{\text{rad}}} \right]\)

\(\Gamma\) :

Deborah number \(\left[ - \right]\)

\(\lambda\) :

Wavelength [m]

\(\psi\) :

Stream function \(\left[ {m^{2} s^{{ - 1}} } \right]\)

\(\sigma\) :

Electrical conductivity \(\left[ {sm^{{ - 1}} } \right]\)

\(\mu\) :

Viscosity \(\left[ {kgm^{{ - 1}} s^{{ - 1}} } \right]\)

\(\delta\) :

Wavenumber \(\left[ { = {{2\pi d} \mathord{\left/ {\vphantom {{2\pi d} \lambda }} \right. \kern-\nulldelimiterspace} \lambda }\,} \right],\left[ - \right]\)

\(\rho\) :

Fluid density \(\left[ {kgm^{{ - 3}} } \right]\)

\(k\) :

Thermal conductivity \(\left[ {Wm^{{ - 1}} K^{{ - 1}} } \right]\)

\(K\) :

Permeability parameter \(\left[ - \right]\)

\(\gamma\) :

Dimensionless temperature \(= \left[ {{{\bar{T} - T_{0} } \mathord{\left/ {\vphantom {{\bar{T} - T_{0} } {T_{1} - T_{0} }}} \right. \kern-\nulldelimiterspace} {T_{1} - T_{0} }}} \right],\left[ - \right]\)

\(\sigma ^{ * }\) :

Stephen Boltzmann constant \(\left[ {Wm^{{ - 2}} K^{{ - 4}} } \right]\)

NN:

Non-Newtonian

FGF:

Fourth-grade fluid

MHD:

Magnetohydrodynamics

FEM:

Finite element method

References

  1. Haynes, R.H.: Physical basis of the dependence of blood viscosity on tube radius. Am. J. Physiol.-Legacy Content 198(6), 1193–1200 (1960)

    Article  Google Scholar 

  2. Haroun, M.H.: Non-linear peristaltic flow of a fourth grade fluid in an inclined asymmetric channel. Comput. Mater. Sci. 39(2), 324–333 (2007)

    Article  Google Scholar 

  3. Hayat, T.; Asghar, Z.; Asghar, S.; Mesloub, S.: Influence of inclined magnetic field on peristaltic transport of fourth grade fluid in an inclined asymmetric channel. J. Taiwan Inst. Chem. Eng. 41(5), 553–563 (2010)

    Article  Google Scholar 

  4. Mustafa, M.; Abbasbandy, S.; Hina, S.; Hayat, T.: Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects. J. Taiwan Inst. Chem. Eng. 45(2), 308–316 (2014)

    Article  Google Scholar 

  5. Abd-Alla, A.M.; Abo-Dahab, S.M.; El-Shahrany, H.D.: Effects of rotation and initial stress on peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field. J. Magn. Magn. Mater. 349, 268–280 (2014)

    Article  Google Scholar 

  6. Kothandapani, M.; Pushparaj, V.; Prakash, J.: Effect of magnetic field on peristaltic flow of a fourth grade fluid in a tapered asymmetric channel. J. King Saud Univ.-Eng. Sci. 30(1), 86–95 (2018)

    Google Scholar 

  7. Arifuzzaman, S.M.; Khan, M.S.; Al-Mamun, A.; Reza-E-Rabbi, S.; Biswas, P.; Karim, I.: Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through porous plate with chemical reaction. J. King Saud Univ.-Sci. 31(4), 1388–1398 (2019)

    Article  Google Scholar 

  8. Latham, T.W.: Fluid motions in peristaltic pump (MS thesis). MIT, Cambridge, MA (1966)

    Google Scholar 

  9. Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37(4), 799–825 (1969)

    Article  Google Scholar 

  10. Asha, S.K.; Deepa, C.K.: Entropy generation for peristaltic blood flow of a magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel. Results Eng. 3, 100024 (2019)

    Article  Google Scholar 

  11. Javed, M.; Naz, R.: Peristaltic flow of a realistic fluid in a compliant channel. Phys. A: Stat. Mech. Appl. 551, 123895 (2020)

    Article  MathSciNet  Google Scholar 

  12. Rajashekhar, C.; Vaidya, H.; Prasad, K.V.; Tlili, I.; Patil, A.; Nagathan, P.: Unsteady flow of Rabinowitsch fluid peristaltic transport in a non-uniform channel with temperature-dependent properties. Alex. Eng. J. 59(2), 693–706 (2020)

    Article  Google Scholar 

  13. Vaidya, H.; Rajashekhar, C.; Divya, B.B.; Manjunatha, G.; Prasad, K.V.; Animasaun, I.L.: Influence of transport properties on the peristaltic MHD Jeffrey fluid flow through a porous asymmetric tapered channel. Results Phys. 18, 103295 (2020)

    Article  Google Scholar 

  14. Saleem, A.; Akhtar, S.; Alharbi, F.M.; Nadeem, S.; Ghalambaz, M.; Issakhov, A.: Physical aspects of peristaltic flow of hybrid nano fluid inside a curved tube having ciliated wall. Results Phys. 19, 103431 (2020)

    Article  Google Scholar 

  15. Abo-Elkhair, R.E.; Bhatti, M.M.; Mekheimer, K.S.: Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (AuCu nanoparticles) with moderate Reynolds number: An expanding horizon. Int. Commun. Heat Mass Transf. 123, 105228 (2021)

    Article  Google Scholar 

  16. Imran, N.; Javed, M.; Sohail, M.; Tlili, I.: Simultaneous effects of heterogeneous-homogeneous reactions in peristaltic flow comprising thermal radiation: Rabinowitsch fluid model. J. Mater. Res. Technol. 9, 3520–3529 (2020)

    Article  Google Scholar 

  17. Noreen, S.; Kausar, T.; Tripathi, D.; Ain, Q.U.; Lu, D.C.: Heat transfer analysis on creeping flow Carreau fluid driven by peristaltic pumping in an inclined asymmetric channel. Thermal Sci. Eng. Progress 17, 100486 (2020)

    Article  Google Scholar 

  18. Rashid, M.; Ansar, K.; Nadeem, S.: Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Phys. A: Stat. Mech. Appl. 553, 123979 (2020)

    Article  MathSciNet  Google Scholar 

  19. Saleem, S.; Akhtar, S.; Nadeem, S.; Saleem, A.; Ghalambaz, M.; Issakhov, A.: Mathematical study of electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls. Chin. J. Phys. 71, 300–311 (2021)

    Article  MathSciNet  Google Scholar 

  20. Hayat, T.; Asghar, S.; Tanveer, A.; Alsaedi, A.: Chemical reaction in peristaltic motion of MHD couple stress fluid in channel with Soret and Dufour effects. Results Phys. 10, 69–80 (2018)

    Article  Google Scholar 

  21. Bhatti, M.M.; Riaz, A.; Zhang, L.; Sait, S.M.; Ellahi, R.: Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis. J. Thermal Anal. Calorim. 144, 1–16 (2020)

    Google Scholar 

  22. Divya, B.B.; Manjunatha, G.; Rajashekhar, C.; Vaidya, H.; Prasad, K.V.: The hemodynamics of variable liquid properties on the MHD peristaltic mechanism of Jeffrey fluid with heat and mass transfer. Alex. Eng. J. 59(2), 693–706 (2020)

    Article  Google Scholar 

  23. Iqbal, J.; Abbasi, F.M.; Shehzad, S.A.: Heat transportation in peristalsis of Carreau-Yasuda nanofluid through a curved geometry with radial magnetic field. Int. Commun. Heat Mass Transf. 117, 104774 (2020)

    Article  Google Scholar 

  24. Abbas, Z.; Rafiq, M.Y.; Hasnain, J.; Umer, H.: Impacts of lorentz force and chemical reaction on peristaltic transport of Jeffrey fluid in a penetrable channel with injection/suction at walls. Alex. Eng. J. 60(1), 1113–1122 (2021)

    Article  Google Scholar 

  25. Abbas, Z.; Rafiq, M.Y.; Alshomrani, A.S.; Ullah, M.Z.: Analysis of entropy generation on peristaltic phenomena of MHD slip flow of viscous fluid in a diverging tube. Case Studies Thermal Eng. 23, 100817 (2021)

    Article  Google Scholar 

  26. Arain, M.B.; Bhatti, M.M.; Zeeshan, A.; Saeed, T.; Hobiny, A.: Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates. Math. Problems Eng. 2020, 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  27. Khazayinejad, M.; Hafezi, M.; Dabir, B.: Peristaltic transport of biological graphene-blood nanofluid considering inclined magnetic field and thermal radiation in a porous media. Powder Technol. 384, 452–465 (2021)

    Article  Google Scholar 

  28. Alsaedi, A.; Nisar, Z.; Hayat, T.; Ahmad, B.: Analysis of mixed convection and hall current for MHD peristaltic transport of nanofluid with compliant wall. Int. Commun. Heat Mass Transf. 121, 105121 (2021)

    Article  Google Scholar 

  29. Qureshi, I.H.; Awais, M.; Awan, S.E.; Abrar, M.N.; Raja, M.A.Z.; Alharbi, S.O.; Khan, I.: Influence of radially magnetic field properties in a peristaltic flow with internal heat generation: numerical treatment. Case Studies Thermal Eng. 26, 101019 (2021)

    Article  Google Scholar 

  30. Rosseland, S.: Astrophysik und Atom-Theoretische Grundlagen, 41–44. Springer-Verlag, Berlin (1931)

    Google Scholar 

  31. Bhatti, M.M.; Marin, M.; Zeeshan, A.; Ellahi, R.; Abdelsalam, S.I.: Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 95 (2020)

    Article  Google Scholar 

  32. Akram, S.; Athar, M.; Saeed, K.: Hybrid impact of thermal and concentration convection on peristaltic pumping of Prandtl nanofluids in non-uniform inclined channel and magnetic field. Case Studies Thermal Eng. 25, 100965 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the reviewers for their encouraging comments and constructive suggestions to improve the quality of the manuscript. The authors appreciate the financial support from HEC Pakistan through NRPU-6295.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaheer Abbas or Jafar Hasnain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, M.Y., Abbas, Z. & Hasnain, J. Theoretical Exploration of Thermal Transportation with Lorentz Force for Fourth-Grade Fluid Model Obeying Peristaltic Mechanism. Arab J Sci Eng 46, 12391–12404 (2021). https://doi.org/10.1007/s13369-021-05877-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05877-0

Keywords

Navigation