Skip to main content
Log in

Analysis of Main Controlling Factors of Natural CO2 Based on 3D Geological Modelling in the Northern Wuerxun Sag, Hailar Basin, China

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Natural CO2 was discovered in Nantun Formation in the northern Wuerxun Sag. A better understanding of the main controlling factors of CO2 distribution in this area is necessary. In this paper, a 3D geological model of Nantun Formation is established based on well-logging and seismic interpretation results, constrained by dual facies conditions. The 3D geological model includes structural, lithologic, physical property information and the spatial distribution of magmatic intrusions. This comprehensive model can display the stratigraphic framework, fault distribution and spatial characteristics of sandstone reservoirs and physical properties. Modelling results show that the sandstone reservoirs of Nantun Formation are of low permeability and low porosity, with N1 Member characterized by a higher sandstone content than N2 Member. The CO2 is of inorganic origin degassed from intruded magma, and most CO2 is stored at structural traps in the west of the Surennuoer strike-slip fault zone. There is a spatial relationship among the CO2 distribution, Surennuoer strike-slip fault and magmatic intrusion bodies, indicating a genetic link. Therefore, we propose that the strike-slip fault and magmatic bodies are the main controlling factors of CO2 distribution and that reservoir quality plays a secondary role. The CO2 accumulation model is established showing the CO2 degassed from magmatic intrusion body, migrated upward along deep faults and was stored in shallower structure traps. Generally, this modelling method is helpful to understand the controlling factors of CO2 accumulation, which can be widely applicable in other areas with natural CO2 occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

taken from the 3D permeability model, showing lateral and vertical of changes depending on the large-scale depositional environments for each zone (inset) permeability of N1 (S2–S8); b S2–S8 lithological profile taken from the 3D lithological model, showing lateral and vertical of changes depending on the large-scale depositional environments for each zone (inset) lithological of N1 (S2–S8); c spatial distribution of the magmatic intrusions constructed by seismic interpretation in the Surennuoer strike-slip fault zone and the S3 fault zone; d, e S2–S8 well-seismic comparison chart

Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sadeq, D.; Iglauer, S.; Lebedev, M.; Rahman, T.; Zhang, Y.H.; Barifcani, A.: Experimental pore-scale analysis of carbon dioxide hydrate in sandstone via X-Ray micro-computed tomography. Int. J. Greenh. Gas. Con. 79, 73–82 (2018)

    Google Scholar 

  2. Blunt, M.; Fayers, F.J.; Orr, F.M.: Carbon dioxide in enhanced oil recovery. Energy Convers. Manag. 34(9–11), 1197–1204 (1993)

    Google Scholar 

  3. Holm, L.W.: CO2 Flooding: Its time has come. JPT J. Pet. Technol. 34(12), 2739–2745 (1982)

    Google Scholar 

  4. Hussain, D.; Dzombak, D.A.; Jaramillo, P.; Lowry, G.V.: Comparative lifecycle inventory (LCI) of greenhouse gas (GHG) emissions of enhanced oil recovery (EOR) methods using different CO2 sources. Int. J. Greenh. Gas. Con. 16, 129–144 (2013)

    Google Scholar 

  5. Gachuz-muro, H.; Berumen, S.; Alcazar, L.O.; Ruodriguez, J.A.: Quebrache, a natural CO2 Reservoir: A new source for EOR projects in Mexico. SPE (2007). https://doi.org/10.2118/107445-MS

    Article  Google Scholar 

  6. Thanh, H.V.; Sugai, Y.; Nguele, R.; Sasaki, K.: Integrated workflow in 3D geological model construction for evaluation of CO2 storage capacity of a fractured basement reservoir in Cuu Long Basin, Vietnam. Int. J. Greenhouse Gas Control. 90, 102826 (2019)

    Google Scholar 

  7. Huang, W.; Wu, H.B.; Li, J.H.; Liu, H.: Study on the Sedimentary System and Favorable Facies of Nantun Formation in the middle Zone of Hailaer-Tamtsag Basin. Acta Sedimentol. Sin. 34(1), 120–128 (2016)

    Google Scholar 

  8. Liu, X.B.: Research on relation between fault system and CO2 gas reservoir formation in Songliao Basin. Daqing Petroleum Institute (2009)

  9. Fu, G.; Meng, Q.F.; Xu, Q.: Main factors controlling oil or gas accumulation and distribution and forecasting for favorable exploration areas of K1n2 in Northern Wuerxun Sag. J. Jilin Univ. (Earth Sci. Edition). 34(3), 377–387 (2004)

    Google Scholar 

  10. Wu, H.B.; Li, J.H.; Liu, H.: Sequence architecture pattern and hydrocarbon accumulation model of Lower Cretaceous in Wuerxun-Beier Depression. Hailaer Basin. Lithologic Reservoirs. 27(5), 155–160 (2015)

    Google Scholar 

  11. He, T.H.; Lu, S.F.; Li, W.H.; Tan, Z.Z.; Zhang, X.W.: Effect of Salinity on Source Rock Formation and Its Control on the Oil Content in Shales in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin Central China. Energy Fuels. 32, 6698–6707 (2018). https://doi.org/10.1021/acs.energyfuels.8b01075

    Article  Google Scholar 

  12. He, T.H.; Lu, S.F.; Li, W.H.; Wang, W.M.; Sun, D.Q.; Pan, W.Q.; Zhang, B.S.: Geochemical characteristics and effectiveness of thick, black shales in southwestern depression, Tarim Basin. J. Petrol. Sci. Eng. 185, 106607 (2018)

    Google Scholar 

  13. Fu, G.; Chen, J.H.: Comprehensive evaluation for control of source rock, fault and potential on faults-enclosed oil/gas accumulation: a case study of K1n1 of main central depression zones in Haita Basin. Petrol. Geol. Recovery Effi. 22(6), 5–10 (2015)

    Google Scholar 

  14. Xu, Y.B.; Feng, Z.H.; Yao, D.: Generation of CO2 gas reservoir in Hailar Basin. Pet. Geol. Oilfield Dev. Daqing. 14(1), 9–11 (1995)

    Google Scholar 

  15. Zhang, T.L.; Chen, J.F.; Zhu, D.F.; Zhao, X.Q.: Genetic analysis of CO2 in CO2 gas reservoirs of middle fault zone of Hailaer-Tamtsag Basin. J. China Univ. Petroleum. 36(2), 68–80 (2012)

    Google Scholar 

  16. Zhang, X.D.: Analysis on genesis and accumulation law of carbon dioxide gas reservoirs in the northeastern areas of China. Acta Petorlei Sinica. 24(6), 13–23 (2003)

    MathSciNet  Google Scholar 

  17. Miao, Q.Y.; Xu, C.G.; Hao, F.; Yin, J.; Wang, Q.; Xie, M.J.S.; Cao, Y.J.; Zou, H.Y.: Roles of fault structures on the distribution of mantle-derived CO2 in the Bohai Bay Basin. NE China. J Asian Earth Sci. 197, 104398 (2020)

    Google Scholar 

  18. Zhang, T.W.; Zhang, M.J.; Bai, B.J.; Wang, X.B.; Li, L.W.: Origin and accumulation of carbon dioxide in the Huanghua depression, Bohai Bay Basin China. AAPG Bull. 92(3), 341–358 (2008)

    Google Scholar 

  19. Liu, X.B.; Fu, X.F.; Liu, D.M.; Wei, W.; Lu, C.B.; Wang, W.A.; Gao, H.J.: Distribution of mantle-derived CO2 gas reservoir and its relationship with basement faults in Songliao Basin. China. J Nat Gas Sci Eng. 56, 593–607 (2018)

    Google Scholar 

  20. Abdelmaksoud, A.; Amin, A.T.; El-Habaak, G.H.; Ewida, H.F.: Facies and petrophysical modelling of the Upper Bahariya Member in Abu Gharadig oil and gas field, north Western Desert. Egypt. J. Afr. Earth. Sci. 149, 503–516 (2019)

    Google Scholar 

  21. Li, Z.L.; Pan, M.; Han, D.K.; Liu, W.L.; Hu, S.Q.; Liu, P.G.; Yan, M.: Three-Dimensional structural modelling technique. Earth Sci. 41(12), 2136–2146 (2016)

    Google Scholar 

  22. Abdelmaksoud, A.; Ewida, H.F.; El-Habaak, G.H.; Amin, A.T.: 3D Structural modelling of the upper Bahariya Member in Abu Gharadig Oil and Gas Field, North Western Desert. Egypt. J. Afr. Earth Sci. 150, 685–700 (2019)

    Google Scholar 

  23. Cao, B.F.; Luo, X.R.; Zhang, L.K.; Lei, Y.H.; Zhou, J.S.: Petrofacies prediction and 3-D geological model in tight gas sandstone reservoirs by integration of well logs and geostatistical modelling. Mar. Petrol. Geol. 114, 104202 (2020)

    Google Scholar 

  24. Thanh, H.V.; Sugai, Y.; Sasaki, K.: Impact of a new geological modelling method on the enhancement of the CO2 storage assessment of E sequence of Nam Vang field, offshore Vietnam. Energ Sour. Part A. 42, 1499–1512 (2020)

    Google Scholar 

  25. Chen, Y.F.; Cai, D.M.; Fan, Z.F.; Li, K.C.; Ni, J.: 3D geological modelling of dual porosity carbonate reservoirs: A case from the Kenkiyak pre-salt oilfield. Kazakhstan. Pet. Explor. Dev. 35(4), 492–497 (2008)

    Google Scholar 

  26. Chen, J.; Wu, H.Y.; Zhu, D.F.; Lin, C.H.; Yu, D.S.: Tectonic evolution of the Hailar Basin And Its Potentials of Oil-Gas exploration. Chinese Journal of Geology. 42, 147–159 (2007)

    Google Scholar 

  27. Gao, J.Y.; Liu, Z.H.; Wu, X.M.; Yang, X.; Huang, C.Y.; Mei, M.; Sun, L.N.: Structural deformation control over the subsidence center migration of Wuerxun Sag in Hailar Basin. J. Jilin Univ. (Earth Sci. Edition). 44(1), 15–24 (2014)

    Google Scholar 

  28. Zhao, X.Q.; Cheng, R.H.; Yu, Z.F.; Sun, F.X.; Wang, P.; Gao, H.J.: Provenance-sedimentary system and tectonic setting of first member of Nantun formation in Northern Wuerxun Sag of Hailar Basin. J. Jilin Univ. (Earth Sci. Edition). 45(1), 61–80 (2015)

    Google Scholar 

  29. Li, Z.D.; Bao, C.H.; Wang, D.J.; Zhang, H.X.: Controlling effect of structure palaeogeomorphology for sand bodies of Wuerxun—Beier Sag in Hailaer Basin. J. Central South Univ. (Sci. Technol.). 47(7), 2357–2365 (2016)

    Google Scholar 

  30. Yang, J.X.; Qi, N.; Lu, S.F.; Wang, M.; Lu, M.Y.; Xia, Y.: Reservoir characterization and geological controls of the Lower Cretaceous sandstones in the northern Wuerxun Sag Hailar Basin, China. J. Pet. Sci. Eng (2021). https://doi.org/10.1016/j.petrol.2021.108771

    Article  Google Scholar 

  31. Abd El-Gawad, E.A.; Abdelwahhab, M.A.; Bekiet, M.H.; Noah, A.Z.; ElSayed, N.A.; Fouda, A.E.: Static reservoir modelling of El Wastani formation, for justifying development plans, using 2D seismic and well log data in Scarab field, offshore Nile Delta, Egypt. J. Afr. Earth. Sci. 158, 103546 (2019)

    Google Scholar 

  32. Zou, Q.Y.; Yan, Z.H.; Xu, Y.D.; Mo, L.L.; Bai, X.G.; He, H.Y.: Structure Modelling using PETREL Software. J. Yangtze Univ. (Nat Sci Edit). 8(2), 62–64 (2011)

    Google Scholar 

  33. Obiadi, I.I.; Okoye, F.C.; Obiadi, C.M.; Irumhe, P.E.; Omeokachie, A.I.: 3-D structural and seismic attribute analysis for field reservoir development and prospect identification in Fabianski Field, onshore Niger delta, Nigeria. J. Afr. Earth. Sci. 158, 103562 (2019)

    Google Scholar 

  34. Hossain, S.: Application of seismic attribute analysis in fluvial seismic geomorphology. J. Pet. Explor. Prod. Te. 10, 1009–1019 (2020)

    Google Scholar 

  35. Li, F.; Cheng, R.H.; Wang, G.S,; Zhao, C.M.; Li, R.L.; Huang, D.W.; Wang, G.D.: Application of seismic attribute analysis to study sedimentary systems of the Yingcheng Formation, Lower Cretaceous, Shiwu Oilfield. Jilin Daxue Xuebao (Diqiu Kexue Ban)/J. Jilin University (Earth Science Edition). 41, 54–60 (2011)

    Google Scholar 

  36. Liu, H.; Guo, Y.S.; Zhao, C.C.; Xia, Y.Y.: Seismic attribute analysis of shallow-water deltaic sand body prediction. J. Southwest Petroleum Univ. (Sci. Technol. Edit.). 38(4), 71–78 (2016)

    Google Scholar 

  37. Cannon, S.: Reservoir modelling: A practical guide. Wiley, Blackwell (2018)

    Google Scholar 

  38. Chapuis, F.; Bauer, H.; Grataloup, S.; Leynet, A.; Bourgine, B.; Castagnac, C.; Fillacier, S.; Lecomte, A.; Le Gallo, Y.; Bonijoly, D.: Geological investigations for CO2 storage: from seismic and well data to 3D modelling. Enrgy. Proced. 4, 4591–4598 (2011)

    Google Scholar 

  39. Lei, M.; Chen, G.P.; Zeng, Y.J.; Luo, Z.Y.; Ma, F.L.: Efficient and fine seismic structure interpretation in Northern Wuerxun Sag and Beier Depression. Oil Geophys. Prospect. 53(1), 219–227 (2018)

    Google Scholar 

  40. Zou, T.; Zuo, Y.; Meng, L.X.; Liu, Y.L.; Xing, X.R.; Feng, J.Y.: Application of geological modelling technology in secondary development of old and complex fault block oilfields. Oil Gas Geol. 35(1), 143–147 (2014)

    Google Scholar 

  41. Zhang, J.G.; Zhang, B.X.; Chen, P.: Description of hydrocarbon system in surennuoer area Hailar Basin. Pet. Explor. Dev. 25(1), 25–28 (1998)

    MathSciNet  Google Scholar 

  42. Fu, G.; Wang, M.C.; Li, S.C.: A method for determining the sealing capacity evolution stage of fault rocks and its application. Natur. Gas. Ind. 37(10), 11–16 (2017)

    Google Scholar 

  43. Oliver, M.A.; Webster, R.: A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA 113, 56–69 (2014)

    Google Scholar 

  44. Hu, H.T.; Wang, L.; Liu, Y.; Qin, P.R.; Fu, H.J.: Research method of fault vertical sealing capacity in overpressure mudstone caprock and its application. Oil Gas Geol. 35(3), 359–364 (2014)

    Google Scholar 

  45. Mahgoub, M.I.; Padmanabhan, E.; Abdullatif, O.M.: Facies and porosity 3D models constrained by stochastic seismic inversion to delineate Paleocene fluvial/lacustrine reservoirs in Melut. Mar. Petrol. Geol. 98, 79–96 (2018)

    Google Scholar 

  46. Ren, S.P.; Yao, G.Q.; Zhang, Y.: High-resolution geostatistical modelling of an intensively drilled heavy oil reservoir, the BQ 10 block, Biyang Sag,. Mar. Petrol. Geol. 104, 404–422 (2019)

    Google Scholar 

  47. Guo, Z.; Sun, L.D.; Jia, A.L.; Lu, T.: 3D geological modelling for tight sand gas reservoir of braided river facies. Petrol. Explor. Dev. 42(1), 76–83 (2015)

    Google Scholar 

  48. Ji, B.Y.; Zhao, G.Z.; Wang, S.G.; Guo, D.Z.: Geologic modelling technique of oil reservoir based on sedimentary facies control. ACTA Petrolei. Sinica. 27, 111–114 (2006)

    Google Scholar 

  49. Pang, Q.; Feng, Q.H.; Ma, Y.; Zhang, Y.Y.; Peng, X.H.: The application of 3D geological modelling technology in horizontal well geologic steering: A case from X3–8 horizontal well development zone. Nat. Gas Geosci. 28(3), 473–478 (2017)

    Google Scholar 

  50. Li, J.A.: Application of Artificial Intelligence Neural Networks in Lithology Identif ication and Porosity and Permeability Prediction——an example from Shihongtan uranium deposit. Northwest. Geol. 43(2), 32–37 (2010)

    Google Scholar 

  51. Urang, J.G.; Ebong, E.D.; Akpan, A.E.; Akaerue, E.I.: A new approach for porosity and permeability prediction from well logs using artificial neural network and curve fitting techniques: A case study of Niger Delta, Nigeria. J. Appl. Geophys. (2020). https://doi.org/10.1016/j.jappgeo.2020.104207

    Article  Google Scholar 

  52. Wang, G.C.; Ju, Y.W.; Huang, C.; Long, S.X.; Peng, Y.M.: Longmaxi-Wufeng Shale lithofacies identification and 3-D modelling in the northern Fuling Gas Field, Sichuan Basin. J. Nat. Gas. Sci. Eng. 47, 59–72 (2017)

    Google Scholar 

  53. Wang, J.K.; Zhang, Y.P.; Xie, J.: Influencing factors and application prospects of CO2 flooding in heterogeneous glutenite reservoirs. Sci. Rep-Uk. 10, 1839 (2020)

    Google Scholar 

  54. Nunes, R.; Almeida, J.A.: Parallelization of sequential Gaussian, indicator and direct simulation algorithms. Comput. Geosci. 36, 1042–1052 (2010)

    Google Scholar 

  55. Deutsch, C.V.; Pyrcz, M.J.: Geostatistical Reservoir Modelling. Oxford University Press, New York (2014)

    Google Scholar 

  56. Qu, X.Y.; Liu, L.; Gao, Y.Q.; Liu, N.; Li, F.L.; Liu, H.Y.: Geology record of mantle-derived magmatogenetic CO2 gas in the northeastern China. ACTA Petrolei Sinica. 31(1), 61–67 (2010)

    Google Scholar 

  57. Dai, J.X.; Yang, S.F.; Chen, H.L.; Shen, X.H.: Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary Basins. Org. Geochem. 36, 1664–1688 (2005)

    Google Scholar 

  58. Craig, H.; Gordon, L.I.: Nitrous oxide in the ocean and the marine atmosphere. Geochim. Cosmochim. Acta. 27(9), 949–955 (1963)

    Google Scholar 

  59. Cerling, T.E.; Solomon, D.K.; Quade, J.; Bowman, J.R.: On the isotopic composition of carbon in soil carbon dioxide. Geochim. Cosmochim. Acta. 55(11), 3403–3405 (1991)

    Google Scholar 

  60. Schoell, M.; Faber, E.; Coleman, M.L.: Carbon and hydrogen isotopic compositions of the NBS 22 and NBS 21 stable isotope reference materials: An inter-laboratory comparison. Org. Geochem. 5(1), 90010–41983 (1983)

    Google Scholar 

  61. Thrasher, J.; Fleet, A.J.; Hay, S.J.; Hovland, M.; Dueppenbecker, S.: Understanding geology as the key to using seepage in exploration: the spectrum of seepage styles. In: Hydrocarbon Migration and its Near-surface Expression, AAPG Memoir. pp. 223–242 (1996). http://search.datapages.com/data/specpubs/memoir66/17/0223.htm

  62. Baker, J.C.; Bai, G.P.; Hamilton, P.J.; Golding, S.D.; Keene, J.B.: Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin system, eastern Australia. J. Sediment. Res. 65(3), 522–530 (1995)

    Google Scholar 

  63. Whiticar, M.J.: Stable isotopes and global budgets. Atmos. Methane: Sources, Sinks, Role Global Change. 13, 138–167 (1993)

    Google Scholar 

  64. Tassi, F.; Fiebig, J.; Vaselli, O.; Nocentini, M.: Origins of methane discharging from volcanic-hydrothermal, geothermal and cold emissions in Italy. Chem. Geol. 310, 36–48 (2012)

    Google Scholar 

  65. Gao, Y.Q.; Liu, L.; Zhang, F.S.; Zhang, Y.J.: C-O isotope composition of dawsonite and its implication on the fluid origin in Wuerxun sag, Hailaer Basin China. Acta Petrol. Sin. 23(4), 831–838 (2007)

    Google Scholar 

  66. Qu, X.Y.; Liu, L.; Gao, Y.Q.; Liu, N.; Peng, X.L.: Characteristics and stability analysis of dawsonite in sandstone. Geol. Rev. 54(6), 838–844 (2008)

    Google Scholar 

  67. Qu, X.Y.; Chen, X.; Yu, M.; Liu, L.: Mineral dating of mantlederived CO2 charging and its application in the southern Songliao Basin China. Appl. Geochemistry. 68, 19–28 (2016)

    Google Scholar 

  68. Huang, B.J.; Xiao, X.M.; Zhu, W.L.: Geochemistry, origin, and accumulation of CO2 in natural gases of the Yinggehai Basin, offshore South China Sea. AAPG Bull. 88(9), 1277–1293 (2004)

    Google Scholar 

  69. Lu, X.S.; Song, Y.; Liu, S.B.; Hong, F.; Fu, X.F.: Progress in the studies of mantle-derived CO2 degassing mechanism, degassing model and pool-forming mechanism. Earth Sci. Front. 15(6), 293–302 (2008)

    Google Scholar 

  70. Pineau, F.; Javoy, M.: Carbon isotopes and concentrations in mid-oceanic ridge basalts. Earth Planet Sci Lett. 62(2), 239–257 (1983)

    Google Scholar 

  71. Cornides, I.: Magmatic carbon dioxide at the crust’s surface in the Carpathian Basin. Geochem J. 27(4–5), 241–249 (1993)

    Google Scholar 

  72. Dockrill, B.; Shipton, Z.K.: Structural controls on leakage from a natural CO2 geologic storage site: Central Utah USA. J. Struct. Geol. 32, 1768–1782 (2010)

    Google Scholar 

  73. Liu, L.; Gao, Y.Q.; Qu, X.Y.; Meng, Q.A.; Gao, F.H.; Ren, Y.G.; Zhu, D.F.: Petrology and carbon-oxygen isotope of inorganic CO2 gas reservoir in Wuerxun depression Hailaer Basin. Acta Petrol. Sin. 2(8), 2229–2236 (2006)

    Google Scholar 

  74. Sun, Y.M.; Xi, X.Y.: Petroleum reservoir filling history and oil-source correlation in the Lishui Sag East China Sea Basin Petrol. Explor. Develop. 30(6), 24–28 (2003)

    Google Scholar 

  75. Zhou, B.; Zhu, D.F.; Li, C.B.; Liu, L.; Zhao, S.; Meng, F.Q.; Ming, X.R.: Diagenesis of dawsonite-bearing tuffite in beier sag Hailar Basin. Acta Sedimentol. Sin. 31(3), 450–460 (2013)

    Google Scholar 

  76. Wang, P.Z.; Li, M.S.; Wang, J.: Petroleum geology and exploration potential of Wuerxun helium-bearing CO2 gas reservoir in Hailaer Basin. Special Oil Gas Reserv. 10(6), 9–1 (2003)

    Google Scholar 

  77. Liu, L.; Qu, X.Y.; Dong, L.S.; Wang, X.Q.; Li, F.L.: Distribution, Occurrence and their petroleum significance of Dawsonite from Mesozoic basins in Northeastern China and adjacent area. J. Jilin University (Earth Science Edition). 39(1), 13278 (2009)

    Google Scholar 

  78. Fu, X.F.; Jia, R.; Wang, H.X.; Wu, T.; Meng, L.D.; Sun, Y.H.: Quantitative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa Depression, Tarim Basin NW China. Petrol. Explor. Dev. 42, 329–338 (2015)

    Google Scholar 

  79. Yang, Z.J.; Xu, T.F.; Wang, F.G.; Yang, Y.L.; Li, X.F.; Zhao, N.N.: Impact of inner reservoir faults on migration and storage of injected CO2. Int. J. Greenh. Gas. Con. 72, 14–25 (2018)

    Google Scholar 

  80. Hulston, J.R.; Hilton, D.R.; Kaplan, I.R.: Helium and carbon isotope systematics of natural gases from Taranaki Basin New Zealand. Appl. Geochem. 16, 419–436 (2001)

    Google Scholar 

  81. Fu, X.F.; Chen, Z.; Yan, B.Q.; Yang, M.; Sun, Y.H.: Analysis of main controlling factors for hydrocarbon accumulation in cen-tral rift zones of the Hailar-Tamtsag Basin using a fault-cap-rock dual control mode. Sci. China Earth Sci. 56(8), 1357–1370 (2013)

    Google Scholar 

Download references

Acknowledgements

Natural Science Foundation of Shandong Province (ZR2019QD013), Foundation and key technology of marine gas hydrate trial production project (ZD2019-184-001), Fundamental Research Funds for the Central Universities (19CX02003A), and NSF of China (41406050) financially support this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, N., Xue, H., Yang, J. et al. Analysis of Main Controlling Factors of Natural CO2 Based on 3D Geological Modelling in the Northern Wuerxun Sag, Hailar Basin, China. Arab J Sci Eng 47, 739–760 (2022). https://doi.org/10.1007/s13369-021-05955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05955-3

Keywords

Navigation