Skip to main content
Log in

A Novel Neural Network for Seismic Anisotropy and Fracture Porosity Measurements in Carbonate Reservoirs

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Conventional neural networks (NNs) have been extensively used to model the spatial heterogeneity of rock properties from seismic inversion. Nevertheless, these generic NNs have a single network structure, which leads to overfitting and convergence difficulties. Furthermore, for stable predictions, conventional NNs highly depend on the initial weights and bias values. This research focuses on resolving the key problems of the existing NNs. In this paper, we propose and apply a novel neural network based on a multilayer linear calculator (MLLC) to estimate seismic anisotropy and fracture porosity in structurally complex and deeply buried carbonate reservoirs. This method, unlike conventional NNs, develops a nonlinear projection relationship between seismic and well log parameters to predict the spatial variation of seismic anisotropy and fracture porosity. We evaluate inversion effectiveness further by optimizing the MLLC with the particle swarm optimization (PSO) algorithm. We evaluate this new kind of MLLC neural network using computer-based simulations of complex models. After verifying the model′s reliability, we used it to estimate anisotropy and fracture porosity in two case studies from separate regions of China. Focused on anisotropy and fracture porosity estimations, the MLLC neural network outperformed the conventional NNs using backpropagation (BP) neural networks in simulation and field studies. The results indicate that the proposed methodology is considered valid for the anisotropic and porosity prediction of fractured reservoirs in other basins in China with similar geological settings and analogous basins anywhere in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ginting, V.; Pereira, F.; Presho, M.; Wu, S.C.: Application of the two-stage Markov chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model. Comput. Geosci. 15(4), 691–707 (2010)

    Article  MathSciNet  Google Scholar 

  2. Yasin, Q.; Du, Q.; Yan, D.; Ismail, A.: Identification and characterization of natural fractures in gas shale reservoir using conventional and specialized logging tools. SEG (Society of Exploration Geophysicists) 88th Annual Meeting 14–19 October at Anaheim, CA, USA. SEG Technical Program Expanded Abstracts: 809–813 (2018).

  3. Yuan, ZW.: Interpretation methods of tight sandstone reservoir with seismic data and well logs based on machine learning method and multi-information fusion. Ph. D. Thesis, China University of Geosciences (2017).

  4. Hosseini, M.; Riahi, M.; Mohebian, R.: A Meta attribute for reservoir permeability classification using well logs and 3D seismic data with probabilistic neural network. Bollettino di Geofisica Teorica ed Applicate 60, 81–96 (2019)

    Google Scholar 

  5. Du, Q.; Yasin, Q.; Sohail, G.M.; Ismail, A.: Combining classification and regression for improving shear wave velocity estimation in a highly heterogeneous reservoir from well logs data. J. Petrol. Sci. Eng. (2019). https://doi.org/10.1016/j.petrol.2019.106260

    Article  Google Scholar 

  6. Aversana, P.D.: Comparison of different machine learning algorithms for lithofacies classification from well logs. Bollettino di Geofisica Teorica ed Applicata 60, 69–80 (2019)

    Google Scholar 

  7. Qiang, Z.; Yasin, Q.; Golsanami, N.; Du, Q.: Prediction of reservoir quality from log-core and seismic inversion analysis with an artificial neural network: a case study from the Sawan Gas Field, Pakistan. Energies 13(2), 486 (2020). https://doi.org/10.3390/en13020486

    Article  Google Scholar 

  8. Li, J.; Hao, T.Y.; Zhao, B.M.: Synthetic predication of favorable fracture zone from seismic and log data. Prog. Geophys. 21(1), 185–189 (2006)

    Google Scholar 

  9. Chen, Y.H.; Jiang, L.C.; Hu, J., et al.: A new method for quantitative prediction of fractured pores in shale gas reservoirs. Geol. Sci. Technol. Inform. 37(1), 115–121 (2018)

    Google Scholar 

  10. Zhang, W.S.; He, J.D.; Zhang, G.Q.: Transversely isotropic parameter inversion using Hopfield neural network. Oil Geophys. Prospect. 34(1), 29–36 (1999)

    Google Scholar 

  11. Fu, D.D.; H, Q.D.: An improved genetic algorithm and its application in parameter inversion in anisotropic media. Geophys. Prospect. Petrol. 41(3), 293–298 (2002).

  12. Wang, Q.; Ding, T.: A kind of sparse tree adder and its structure design. Chin. J. Elect. Dev. 28(2), 312–314 (2005)

    Google Scholar 

  13. Hu, X.; Eberhart, R. C.; Shi, Y.: Particle swarm with extended memory for multi-objective optimization. In: Proceedings of the IEEE Swarm intelligence symposium, SIS, pp. 193–197, IEEE, Indianapolis (2003).

  14. Parsopoulos, K.E.; Vrahatis, M.N.: On the computation of all global minimizes through particle swarm optimization. IEEE Trans. Evolut. Comput. 8(3), 211–224 (2004)

    Article  Google Scholar 

  15. Salmen, A.; Ahmad, I.; AI-Madani, B.: Particle swarm optimization for task assignment problem. Microprocess. Mierosyst. 26, 363–371 (2002)

    Article  Google Scholar 

  16. Onwunalu, J.E.; Durlofsky, L.J.: Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput. Geosci. 14(1), 183–198 (2010)

    Article  Google Scholar 

  17. Liu, L.F.; Sun, Z.D.; Han, J.F., et al.: A carbonate fluid identification method based on quantum particle swarm fuzzy neural network. Chin. J. Geophys. 57(3), 991–1000 (2014)

    Google Scholar 

  18. Yasin, Q.; Yan, D.; Ismail, A.; Du, Q.: Estimation of petrophysical parameters from seismic inversion by combining particle swarm optimization and multi-layer linear calculator. Nat. Resour. Res. (2020). https://doi.org/10.1007/s11053-020-09641-3

    Article  Google Scholar 

  19. Thomsen, L.: Weak elastic anisotropy. Geophysics 51, 1954–1966 (1986)

    Article  Google Scholar 

  20. Backus, G.E.: Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 6(11), 4427–4440 (1962)

    Article  Google Scholar 

  21. Fei, T.W.: Layer-induced seismic anisotropy from full-wave sonic logs: theory, application, and validation. Geophysics 71(6), D183–D190 (2006)

    Article  Google Scholar 

  22. Kumar, D.: Applying Backus averaging for deriving seismic anisotropy of a long-wavelength equivalent medium from well-log data. J. Geophys. Eng. 10(5), 86–95 (2013)

    Article  Google Scholar 

  23. Martin, G.S.; Wiley, R.; Marfurt, K.J.: Marmousi2: an elastic upgrade for upgrade for Marmousi. Lead. Edge 25(2), 156–166 (2006)

    Article  Google Scholar 

  24. Cao, D.P.: The upscaling method of the well logging data based on Backus equivalence average method. Geophys. Prospect. Petrol. 54(1), 105–111 (2015)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research & Development Programs of China (Grant No. 2019YFA0708302). We are grateful to the reviewers for their valuable comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamar Yasin.

Appendices

Appendix A

1.1 A-1 Estimation of the Anisotropic Parameter from Backus Average

Anisotropy, caused by aligned fractures, is the main attribute for fractured reservoir characterization. Backus [20] has already demonstrated the calculation of stiffness parameters, in which an equivalent elastic medium was described,

$$ \left\{ \begin{gathered} {\varvec{c}}_{11} = \left\langle {{\varvec{\lambda}} + 2{\varvec{\mu}}} \right\rangle \hfill \\ {\varvec{c}}_{13} = \left\langle {\varvec{\lambda}} \right\rangle \hfill \\ {\varvec{c}}_{33} = \left\langle {{\varvec{\lambda}} + 2{\varvec{\mu}}} \right\rangle \hfill \\ {\varvec{c}}_{44} = \left\langle {\varvec{\mu}} \right\rangle \hfill \\ {\varvec{c}}_{66} = \left\langle {\varvec{\mu}} \right\rangle \hfill \\ {\varvec{c}}_{12} = {\varvec{c}}_{11} - 2{\varvec{c}}_{66} = \left\langle {\left( {{\varvec{\lambda}} + 2{\varvec{\mu}}} \right)} \right\rangle - 2\left\langle {\varvec{\mu}} \right\rangle \hfill \\ \end{gathered} \right. $$
(9)

where the angle bracket <> denotes an averaged quantity. The stiffness parameters can be obtained with the knowledge of longitudinal wave velocity, shear wave velocity and density \({\varvec{\rho}}\),

$$ \left\{ \begin{gathered} {\varvec{c}}_{11} = = \left\langle {\varvec{\rho V}_{p}^{2} } \right\rangle \hfill \\ {\varvec{c}}_{13} = \left[ {1 - 2\left\langle {\frac{{{\varvec{V}}_{s}^{2} }}{{{\varvec{V}}_{p}^{2} }}} \right\rangle } \right]\left\langle {\varvec{\rho V}_{p}^{2} } \right\rangle \hfill \\ {\varvec{c}}_{33} = \left\langle {\varvec{\rho V}_{p}^{2} } \right\rangle \hfill \\ {\varvec{c}}_{44} = \left\langle {\varvec{\rho V}_{s}^{2} } \right\rangle \hfill \\ {\varvec{c}}_{66} = \left\langle {\varvec{\rho V}_{s}^{2} } \right\rangle \hfill \\ {\varvec{c}}_{12} = \left\langle {\varvec{\rho V}_{p}^{2} } \right\rangle - 2\left\langle {\varvec{\rho V}_{s}^{2} } \right\rangle \hfill \\ \end{gathered} \right. $$
(10)

According to the relationship between the stiffness parameters and Thomsen parameters [19], Thomsen parameters of the effective medium can be written as follows based on the elastic parameters of \({\varvec{V}}_{{\varvec{p}}}\), \({\varvec{V}}_{{\varvec{s}}}\), \({\varvec{\rho}}\).

$$ \left\{ \begin{gathered} {\varvec{\varepsilon}} = 2\left( {\left\langle {\varvec{\rho V}_{s}^{2} } \right\rangle \left\langle {\frac{1}{{\varvec{\rho V}_{p}^{2} }}} \right\rangle - \left\langle {\frac{{{\varvec{V}}_{s}^{2} }}{{{\varvec{V}}_{p}^{2} }}} \right\rangle } \right) + 2\left( {\left\langle {\varvec{\rho V}_{s}^{2} } \right\rangle \left\langle {\frac{1}{{\varvec{\rho V}_{p}^{2} }}} \right\rangle^{2} - \left\langle {\frac{{{\varvec{V}}_{s}^{2} }}{{{\varvec{V}}_{p}^{2} }}} \right\rangle^{2} \left\langle {\frac{1}{{\varvec{\rho V}_{p}^{2} }}} \right\rangle } \right) \hfill \\ {\varvec{\delta}} = \frac{{2\left( {1 - \left\langle {\frac{{{\varvec{V}}_{s}^{2} }}{{{\varvec{V}}_{p}^{2} }}} \right\rangle } \right)\left( {\left\langle {\frac{1}{{\varvec{\rho V}_{p}^{2} }}} \right\rangle - \left\langle {\frac{{{\varvec{V}}_{s}^{2} }}{{{\varvec{V}}_{p}^{2} }}} \right\rangle \left\langle {\frac{1}{{\varvec{\rho V}_{s}^{2} }}} \right\rangle } \right)}}{{\left( {\left\langle {\frac{1}{{\varvec{\rho V}_{s}^{2} }}} \right\rangle - \left\langle {\frac{1}{{\varvec{\rho V}_{p}^{2} }}} \right\rangle } \right)}} \hfill \\ {\varvec{\gamma}} = \frac{1}{2}\left( {\left\langle {\varvec{\rho V}_{s}^{2} } \right\rangle \left\langle {\frac{1}{{\varvec{\rho V}_{s}^{2} }}} \right\rangle - 1} \right) \hfill \\ \end{gathered} \right. $$
(11)

According to Eq. (11), the target anisotropy parameters are calculated from the well logs (Vp, Vs, ρ), which is particularly useful in detecting seismic anisotropy from seismic data.

1.2 A-2 Fracture Porosity

The volume of shale (Vsh) was estimated from the gamma-ray log using Eq. (12):

$$ V_{{{\text{sh}}}} = \frac{{{\text{GR}}_{\log } - {\text{GR}}_{\min } }}{{{\text{GR}}_{\max } - {\text{GR}}_{\min } }} $$
(12)

where GRlog, GRmin, and GRmax are gamma-ray reading at a depth of interest, 100% clean sand, and 100% shale, respectively (API units).

The total porosity \(\varphi_{T}\) was estimated using a density log using Eq. (13):

$$ \varphi_{T} = \frac{{\rho_{{{\text{ma}}}} - \rho_{b} }}{{\rho_{{{\text{ma}}}} - \rho_{f} }} $$
(13)

where ρma is, the matrix density and ρf denotes fluid density.

$$ \varphi_{F} = \frac{{{\text{Frac}}\left( {\varphi_{T} - 1} \right)}}{{\left( {v\varphi_{T} - 1} \right)}} $$
(14)

where \(\varphi_{F}\) is the fracture porosity (with no vugs) and \(v\) denotes porosity partitioning coefficient.

Appendix B

2.1 PSO Algorithm for Optimization

figure a

Appendix C

3.1 C-1 Accuracy Analysis of the Simple Model

The inversion of the three anisotropic parameters is carried out using the proposed method, but the parameter γ is lower than the other two parameters. Because the structure of parameter γ is different from the other two parameters (ε, δ), while the seismic response is a comprehensive response with three anisotropic parameters. In this paper, the training samples we choose are CDP50, CDP100, CDP150, CDP200, CDP250, CDP300, CDP350. While CDP50 and CDP100, the correlation between seismic and parameter γ are not very good. So, the precision is low. The precision is affected by the structure of the geological model rather than the stability of the algorithm we mentioned, and we select the same part of the model structure to carry out inversion. Figure 20a gives the complete seismic response, and Fig. 20b gives the partial seismic response, which comes from the red box of complete seismic response, as shown in Fig. 20a. Then, we use this part for the inversion. The inversion results are shown in Fig. 20c–e. The results show that the accuracy of the three anisotropic parameters is the same. The difference in accuracy is due to the design model rather than the stability of the algorithm.

Fig. 20
figure 20

The model of synthetic and inversion Thomson anisotropic parameters, a synthetic seismic, b part of synthetic seismic c anisotropic parameter of ε, d anisotropic parameter of δ, e anisotropic parameter of γ

3.2 C-2 Case Studies Application Analysis of the BP Neural Network

The comparison results with the backpropagation neural network (BP) are also shown to better reflect the method's credibility in field data examples. The inversion results of anisotropic strength parameters ε, γ, and δ (red curve represents corresponding anisotropic parameter) are shown in Fig. 21. According to the inversion results, both inversion fracture responses (with the red color denoting high value) could satisfy values at the well location. By contrast, the BP-based inversion results have poor lateral continuity of the anisotropy body's seismic event and unclear boundaries. For further comparisons of fracture distribution, the slices of different parameters are shown in Fig. 22. The multilayer linear calculator (MLLC) inversion results indicate that fracture density near Well A and Well B is relatively high, whereas the one surrounding Well D is relatively low, and fractures did not develop near Well C. The results agree with the drilling result in Table 2. However, the BP-based inversion results failed to characterize the lateral fracture distribution, proving the proposed method's stability.

Fig. 21
figure 21

MLLC inversion of a anisotropic parameter profile of ε; c anisotropic parameter profile of γ; e anisotropic parameter profile of δ; BP inversion of b anisotropic parameter profile of ε; d anisotropic parameter profile of γ; f anisotropic parameter profile of δ

Fig. 22
figure 22

The slices of anisotropic parameters, MLLC inversion of a anisotropic parameter profile of ε; c anisotropic parameter profile of γ; e anisotropic parameter profile of δ; BP inversion of b anisotropic parameter profile of ε; d anisotropic parameter profile of γ; f anisotropic parameter profile of δ

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Cui, M., Zhao, F. et al. A Novel Neural Network for Seismic Anisotropy and Fracture Porosity Measurements in Carbonate Reservoirs. Arab J Sci Eng 47, 7219–7241 (2022). https://doi.org/10.1007/s13369-021-05970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05970-4

Keywords

Navigation