Skip to main content

Advertisement

Log in

Inhibition of Maternal c-Src Ameliorates the Male Offspring Hypertension by Suppressing Inflammation and Neurotransmitters in the Paraventricular Nucleus

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Long-term maternal salt intake induces the hypertension in offspring. Numerous studies have also indicated that high-salt diet causes the inflammation and an imbalance in neurotransmitters in the paraventricular nucleus (PVN) which increases the blood pressure and sympathetic activity. This study aimed to explore whether maternal salt intake induces hypertension in their male offspring by increasing the inflammation and changing the neurotransmitters balance in the paraventricular nucleus of offspring. This study includes two parts: Part I to explore the effect of high-salt diet on pregnant rats and the changes in inflammation and neurotransmitters in their male offspring PVN; Part II to reveal the influence on their offspring of bilateral PVN infusion of c-Src inhibitor dasatinib (DAS) in pregnant rats fed a high-salt diet. Maternal high-salt diet intake during copulation, pregnancy, and lactation impacted the offspring mean arterial pressure (MAP) and elevated the offspring PVN levels of p-Src, proinflammatory cytokines, and excitatory neurotransmitters. Bilateral PVN infusion of a c-Src inhibitor combined with maternal high-salt diets decreased MAP in the offspring. The infusion was also shown to suppress the Src-induced MAPK/NF-κB signaling pathway (p38 MAPK, JNK, Erk1/2), which attenuates inflammatory reactions. Finally, bilateral PVN infusion of the Src inhibitor in pregnant rat with high-salt diets improved the levels of inhibitory neurotransmitters in offspring PVN, which restored the excitatory-inhibitory neurotransmitter balance in male offspring. High-salt diets increase sympathetic activity and blood pressure in adult offspring, probably by activating the c-Src/MAPKs/NF-κB signaling pathway-induced inflammation. Moreover, NF-κB disrupts the downstream excitatory-inhibitory neurotransmitter balance in the PVN of male offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu, J., Li, N., Liu, Y., Li, W., He, A., Zhu, D., Feng, X., Liu, B., Shi, R., Zhang, Y., Lv, J., & Xu, Z. (2017). Maternal high salt diet altered Adenosine-mediated vasodilatation via PKA/BK channel pathway in offspring rats. Molecular Nutrition & Food Research, 61, 1600963.

    Article  CAS  Google Scholar 

  2. Maruyama, K., Kagota, S., Van Vliet, B. N., Wakuda, H., & Shinozuka, K. (2015). A maternal high salt diet disturbs cardiac and vascular function of offspring. Life Sciences, 136, 42–51.

    Article  CAS  PubMed  Google Scholar 

  3. Boegehold, M. A. (2002). Microvascular structure and function in salt-sensitive hypertension. Microcirculation, 9, 225–241.

    Article  PubMed  Google Scholar 

  4. Blaustein, M. P., Leenen, F. H., Chen, L., Golovina, V. A., Hamlyn, J. M., Pallone, T. L., Van Huysse, J. W., Zhang, J., & Wier, W. G. (2012). How NaCl raises blood pressure: A new paradigm for the pathogenesis of salt-dependent hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 302, H1031-1049.

    Article  CAS  PubMed  Google Scholar 

  5. Seravalli, P., de Oliveira, I. B., Zago, B. C., de Castro, I., Veras, M. M., Alves-Rodrigues, E. N., & Heimann, J. C. (2016). High and low salt intake during pregnancy: Impact on cardiac and renal structure in newborns. PloS One, 11, e0161598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Liu, Y., Qi, L., Wu, J., Xu, T., Yang, C., Chen, X., Lv, J., & Xu, Z. (2018). Prenatal high-salt diet impaired vasodilatation with reprogrammed renin-angiotensin system in offspring rats. Journal of Hypertension, 36, 2369–2379.

    Article  CAS  PubMed  Google Scholar 

  7. Ding, Y., Lv, J., Mao, C., Zhang, H., Wang, A., Zhu, L., Zhu, H., & Xu, Z. (2010). High-salt diet during pregnancy and angiotensin-related cardiac changes. Journal of Hypertension, 28, 1290–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Velten, M., Heyob, K. M., Wold, L. E., & Rogers, L. K. (2018). Perinatal inflammation induces sex-related differences in cardiovascular morbidities in mice. American Journal of Physiology-Heart and Circulatory Physiology, 314, H573–H579.

    PubMed  Google Scholar 

  9. Pezeshki, Z., Eshraghi-Jazi, F., & Nematbakhsh, M. (2014). Vascular response to graded angiotensin II infusion in offspring subjected to high-salt drinking water during pregnancy: The effect of blood pressure, heart rate, urine output, endothelial permeability, and gender. International Journal of Vascular Medicine, 2014, 876527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sullivan, J. C. (2008). Sex and the renin-angiotensin system: Inequality between the sexes in response to RAS stimulation and inhibition. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294, R1220-1226.

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds, C. M., Vickers, M. H., Harrison, C. J., Segovia, S. A., & Gray, C. (2014). High fat and/or high salt intake during pregnancy alters maternal meta-inflammation and offspring growth and metabolic profiles. Physiological Reports, 2, e12110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang, M. L., Yu, X. J., Li, X. G., Pang, D. Z., Su, Q., Saahene, R. O., Li, H. B., Mao, X. Y., Liu, K. L., Fu, L. Y., Li, Y., Zhu, G. Q., & Kang, Y. M. (2018). Blockade of TLR4 within the paraventricular nucleus attenuates blood pressure by regulating ROS and inflammatory cytokines in prehypertensive rats. American Journal of Hypertension, 31, 1013–1023.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, M. L., Kang, Y. M., Li, X. G., Su, Q., Li, H. B., Liu, K. L., Fu, L. Y., Saahene, R. O., Li, Y., Tan, H., & Yu, X. J. (2018). Central blockade of NLRP3 reduces blood pressure via regulating inflammation microenvironment and neurohormonal excitation in salt-induced prehypertensive rats. Journal of Neuroinflammation, 15, 95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang, D. D., Liang, Y. F., Qi, J., Kang, K. B., Yu, X. J., Gao, H. L., Liu, K. L., Chen, Y. M., Shi, X. L., Xin, G. R., Fu, L. Y., Kang, Y. M., & Cui, W. (2019). Carbon monoxide attenuates high salt-induced hypertension while reducing pro-inflammatory cytokines and oxidative stress in the paraventricular nucleus. Cardiovascular Toxicology, 19, 451–464.

    Article  PubMed  CAS  Google Scholar 

  15. Ngarashi, D., Fujikawa, K., Ferdaus, M. Z., Zahid, H. M., Ohara, H., & Nabika, T. (2019). Dual inhibition of NADPH oxidases and xanthine oxidase potently prevents salt-induced stroke in stroke-prone spontaneously hypertensive rats. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 42, 981–989.

    Article  CAS  Google Scholar 

  16. Zheng, X., Li, X., Chen, M., Yang, P., Zhao, X., Zeng, L., OuYang, Y., Yang, Z., & Tian, Z. (2019). The protective role of hawthorn fruit extract against high salt-induced hypertension in Dahl salt-sensitive rats: Impact on oxidative stress and metabolic patterns. Food & Function, 10, 849–858.

    Article  CAS  Google Scholar 

  17. Yu, X. J., Miao, Y. W., Li, H. B., Su, Q., Liu, K. L., Fu, L. Y., Hou, Y. K., Shi, X. L., Li, Y., Mu, J. J., Chen, W. S., Cui, W., Zhu, G. Q., Ebenezer, P. J., Francis, J., & Kang, Y. M. (2019). Blockade of endogenous angiotensin-(1–7) in hypothalamic paraventricular nucleus attenuates high salt-induced sympathoexcitation and hypertension. Neuroscience Bulletin, 35, 47–56.

    Article  CAS  PubMed  Google Scholar 

  18. Banek, C. T., Gauthier, M. M., Van Helden, D. A., Fink, G. D., & Osborn, J. W. (2019). Renal inflammation in DOCA-salt hypertension. Hypertension, 73, 1079–1086.

    Article  CAS  PubMed  Google Scholar 

  19. Brugge, J. S., Cotton, P. C., Queral, A. E., Barrett, J. N., Nonner, D., & Keane, R. W. (1985). Neurones express high levels of a structurally modified, activated form of pp60c-src. Nature, 316, 554–557.

    Article  CAS  PubMed  Google Scholar 

  20. Barnekow, A., & Gessler, M. (1986). Activation of the pp60c-src kinase during differentiation of monomyelocytic cells in vitro. The EMBO Journal, 5, 701–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Callera, G. E., Touyz, R. M., Tostes, R. C., Yogi, A., He, Y., Malkinson, S., & Schiffrin, E. L. (2005). Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src. Hypertension, 45, 773–779.

    Article  CAS  PubMed  Google Scholar 

  22. Touyz, R. M., Yao, G., & Schiffrin, E. L. (2003). c-Src induces phosphorylation and translocation of p47phox: Role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 981–987.

    Article  CAS  PubMed  Google Scholar 

  23. Touyz, R. M., He, G., Wu, X. H., Park, J. B., Mabrouk, M. E., & Schiffrin, E. L. (2001). Src is an important mediator of extracellular signal-regulated kinase 1/2-dependent growth signaling by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients. Hypertension, 38, 56–64.

    Article  CAS  PubMed  Google Scholar 

  24. Massip Copiz, M. M., & Santa Coloma, T. A. (2016). c-Src and its role in cystic fibrosis. European Journal of Cell Biology, 95, 401–413.

    Article  CAS  PubMed  Google Scholar 

  25. Song, C., Hong, Y. H., Park, J. G., Kim, H. G., Jeong, D., Oh, J., Sung, G. H., Hossain, M. A., Taamalli, A., Kim, J. H., & Cho, J. Y. (2019). Suppression of Src and Syk in the NF-kappaB signaling pathway by Olea europaea methanol extract is leading to its anti-inflammatory effects. Journal of Ethnopharmacology, 235, 38–46.

    Article  CAS  PubMed  Google Scholar 

  26. Xu, B., & Li, H. (2015). Brain mechanisms of sympathetic activation in heart failure: Roles of the reninangiotensin system, nitric oxide and proinflammatory cytokines (Review). Molecular Medicine Reports, 12, 7823–7829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leenen, F. H. (2014). Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. American Journal of Hypertension, 27, 1024–1032.

    Article  PubMed  Google Scholar 

  28. Arenas, Y. M., Cabrera-Pastor, A., Juciute, N., Mora-Navarro, E., & Felipo, V. (2020). Blocking glycine receptors reduces neuroinflammation and restores neurotransmission in cerebellum through ADAM17-TNFR1-NF-kappabeta pathway. Journal of Neuroinflammation, 17, 269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karki, P., Hong, P., Johnson, J., Jr., Pajarillo, E., Son, D. S., Aschner, M., & Lee, E. Y. (2018). Arundic acid increases expression and function of astrocytic glutamate transporter EAAT1 via the ERK, Akt, and NF-kappaB pathways. Molecular Neurobiology, 55, 5031–5046.

    Article  CAS  PubMed  Google Scholar 

  30. Lozic, M., Sarenac, O., Murphy, D., & Japundzic-Zigon, N. (2018). Vasopressin, central autonomic control and blood pressure regulation. Current Hypertension Reports, 20, 11.

    Article  PubMed  CAS  Google Scholar 

  31. Kang, Y. M., Yang, Q., Yu, X. J., Qi, J., Zhang, Y., Li, H. B., Su, Q., & Zhu, G. Q. (2014). Hypothalamic paraventricular nucleus activation contributes to neurohumoral excitation in rats with heart failure. Regenerative Medicine Research, 2, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun, Y., Sun, B., & He, R. (2017). Effect of the changes of NMDA receptor in hypothalamic paraventricular nucleus on cardiac function and sympathetic nervous activity in rats with heart failure. Biochemical and Biophysical Research communications, 493, 1336–1341.

    Article  CAS  PubMed  Google Scholar 

  33. Kang, Y. M., Zhang, A. Q., Zhao, X. F., Cardinale, J. P., Elks, C., Cao, X. M., Zhang, Z. W., & Francis, J. (2011). Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Research in Cardiology, 106, 473–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., Yan, N., Guo, Z., & Francis, J. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovascular Research, 83, 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H. B., Qin, D. N., Suo, Y. P., Guo, J., Su, Q., Miao, Y. W., Sun, W. Y., Yi, Q. Y., Cui, W., Cheng, K., Zhu, G. Q., & Kang, Y. M. (2015). Blockade of salusin-beta in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy in salt-induced hypertensive rats. Journal of Cardiovascular Pharmacology, 66, 323–331.

    Article  CAS  PubMed  Google Scholar 

  36. Su, Q., Qin, D. N., Wang, F. X., Ren, J., Li, H. B., Zhang, M., Yang, Q., Miao, Y. W., Yu, X. J., Qi, J., Zhu, Z., Zhu, G. Q., & Kang, Y. M. (2014). Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicology and Applied Pharmacology, 276, 115–120.

    Article  CAS  PubMed  Google Scholar 

  37. Li, H. B., Qin, D. N., Ma, L., Miao, Y. W., Zhang, D. M., Lu, Y., Song, X. A., Zhu, G. Q., & Kang, Y. M. (2014). Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicology and Applied Pharmacology, 279, 141–149.

    Article  CAS  PubMed  Google Scholar 

  38. Elks, C. M., Reed, S. D., Mariappan, N., Shukitt-Hale, B., Joseph, J. A., Ingram, D. K., & Francis, J. (2011). A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress. PloS ONE, 6, e24028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xia, W. J., Xu, M. L., Yu, X. J., Du, M. M., Li, X. H., Yang, T., Li, L., Li, Y., Kang, K. B., Su, Q., Xu, J. X., Shi, X. L., Wang, X. M., Li, H. B., & Kang, Y. M. (2021). Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat. Gut Microbes, 13, 1–24.

    Article  PubMed  CAS  Google Scholar 

  40. Krum, H., Sobotka, P., Mahfoud, F., Bohm, M., Esler, M., & Schlaich, M. (2011). Device-based antihypertensive therapy: Therapeutic modulation of the autonomic nervous system. Circulation, 123, 209–215.

    Article  PubMed  Google Scholar 

  41. Xie, L., Mao, X., Jin, K., & Greenberg, D. A. (2013). Vascular endothelial growth factor-B expression in postischemic rat brain. Vascular Cell, 5, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, H. B., Qin, D. N., Cheng, K., Su, Q., Miao, Y. W., Guo, J., Zhang, M., Zhu, G. Q., & Kang, Y. M. (2015). Central blockade of salusin beta attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Scientific Reports, 5, 11162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cui, L., Meng, Y., Xu, D., Feng, Y., Chen, G., Hu, B., Feng, G., & Yin, L. (2013). Analysis of the metabolic properties of maintenance hemodialysis patients with glucose-added dialysis based on high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Therapeutics and Clinical Risk Management, 9, 417–425.

    PubMed  PubMed Central  Google Scholar 

  44. Barber, M., Kasturi, B. S., Austin, M. E., Patel, K. P., MohanKumar, S. M., & MohanKumar, P. S. (2003). Diabetes-induced neuroendocrine changes in rats: Role of brain monoamines, insulin and leptin. Brain Research, 964, 128–135.

    Article  CAS  PubMed  Google Scholar 

  45. Contreras, R. J. (1993). High NaCl intake of rat dams alters maternal behavior and elevates blood pressure of adult offspring. The American Journal of Physiology, 264, R296-304.

    CAS  PubMed  Google Scholar 

  46. Mao, C., Liu, R., Bo, L., Chen, N., Li, S., Xia, S., Chen, J., Li, D., Zhang, L., & Xu, Z. (2013). High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system. The Journal of Endocrinology, 218, 61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmidt-Pogoda, A., Strecker, J. K., Liebmann, M., Massoth, C., Beuker, C., Hansen, U., Konig, S., Albrecht, S., Bock, S., Breuer, J., Sommer, C., Schwab, N., Wiendl, H., Klotz, L., & Minnerup, J. (2018). Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation. PloS ONE, 13, e0209871.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rust, P., & Ekmekcioglu, C. (2017). Impact of salt intake on the pathogenesis and treatment of hypertension. Advances in Experimental Medicine and Biology, 956, 61–84.

    Article  PubMed  Google Scholar 

  49. Leandro, S. M., Furukawa, L. N., Shimizu, M. H., Casarini, D. E., Seguro, A. C., Patriarca, G., Coelho, M. S., Dolnikoff, M. S., & Heimann, J. C. (2008). Low birth weight in response to salt restriction during pregnancy is not due to alterations in uterine-placental blood flow or the placental and peripheral renin-angiotensin system. Physiology & Behavior, 95, 145–151.

    Article  CAS  Google Scholar 

  50. Yang, Q., Yu, X.-J., Su, Q., Yi, Q.-Y., Song, X.-A., Shi, X.-L., Li, H.-B., Qi, J., Zhu, G.-Q., & Kang, Y.-M. (2019). Blockade of c-Src within the paraventricular nucleus attenuates inflammatory cytokines and oxidative stress in the mechanism of the TLR4 signal pathway in salt-induced hypertension. Neuroscience Bulletin, 36, 385.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moura, E., Afonso, J., Serrao, M. P., & Vieira-Coelho, M. A. (2009). Effect of clonidine on tyrosine hydroxylase activity in the adrenal medulla and brain of spontaneously hypertensive rats. Basic & Clinical Pharmacology & Toxicology, 104, 113–121.

    Article  CAS  Google Scholar 

  52. Basting, T., Xu, J., Mukerjee, S., Epling, J., Fuchs, R., Sriramula, S., & Lazartigues, E. (2018). Glutamatergic neurons of the paraventricular nucleus are critical contributors to the development of neurogenic hypertension. The Journal of Physiology, 596, 6235–6248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsuda, K., & Masuyama, Y. (1991). Presynaptic regulation of neurotransmitter release in hypertension. Clinical and Experimental Pharmacology & Physiology, 18, 455–467.

    Article  CAS  Google Scholar 

  54. Maes, M. (1995). Evidence for an immune response in major depression: A review and hypothesis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 19, 11–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81800373, 82070439, 81770426, 81700373, 82070440), Shaanxi Basic Research on Natural Science (Nos. 2019JQ-263, 2020JM-079), the China Postdoctoral Science Foundation (No. 2019M660259).

Author information

Authors and Affiliations

Authors

Contributions

QS, XJY, and YMK designed the study. QS, QY, HBL, and WJX performed all experiments. QY, HBL, XMW, XJY, and QS also performed, checked the data analysis, and drafted the manuscript. QY, XMW, and KLL participated in data analysis. XMW helped to check the responses and revised manuscript. All authors reviewed the final manuscript.

Corresponding authors

Correspondence to Xiao-Jing Yu or Yu-Ming Kang.

Ethics declarations

Conflict of interest

None of the listed authors has any financial or other interest that could be of conflict.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Yu, XJ., Yang, Q. et al. Inhibition of Maternal c-Src Ameliorates the Male Offspring Hypertension by Suppressing Inflammation and Neurotransmitters in the Paraventricular Nucleus. Cardiovasc Toxicol 21, 820–834 (2021). https://doi.org/10.1007/s12012-021-09672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09672-z

Keywords

Navigation