Skip to main content

Advertisement

Log in

Renewable Energy from Biomass: an Overview of the Amazon Region

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Economic and social development around the world has contributed to increased energy demands, which have strained the energy supply chain. The global energy matrix depends on the exploitation of fossil fuels, which are responsible for disastrous social, political, and environmental impacts. This situation has led to the need for technological advances in the development of new sources of safe, renewable, and sustainable energy production. In recent years, biomass has gained importance among emerging sources of energy production due to its abundance and renewable nature. Therefore, this study reviews the availability and physicochemical properties of unexplored Amazonian biomass sources, which, in principle, neither compete with food production nor have disastrous environmental impacts on the Amazon forest. This review also focuses on thermochemical conversion methods for possible application of the biomasses under study to produce electricity for geographically isolated communities in the Amazon, whose electricity comes from generators powered by diesel oil, a nonrenewable and relatively expensive resource. The information provided in this article is important for the formulation of alternative and renewable energy government policies for the Amazon region, in addition to presenting a scientific study of the main biomass available in the region, including thermochemical characteristics for energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All of the data are available with the corresponding author and can be provided on request.

References

  1. Safarian S, Unnþorsson R, Richter C (2019) A review of biomass gasification modelling. Renew Sustain Energ Rev 110:378–391. https://doi.org/10.1016/j.rser.2019.05.003

    Article  CAS  Google Scholar 

  2. Ghasemian S, Faridzad A, Abbaszadeh P, Taklif A, Ghasemi A, Hafezi R (2020) An overview of global energy scenarios by 2040: identifying the driving forces using cross-impact analysis method. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02738-5

  3. Machado YL, Ponte MR, Gadelha AMT, Costa AE Jr, Malveira JQ, Mazzetto SE, Rios MAS (2018) A thermogravimetric analysis of biomass wastes from the northeast region of Brazil as fuels for energy recovery. Energ Source Part A 41:1557–1572. https://doi.org/10.1080/15567036.2018.1549132

    Article  CAS  Google Scholar 

  4. Mohamed U, Zhao Y-J, Yi Q, Shi S-J, Wei G-Q, Nimmo W (2021) Evaluation of life cycle energy, economy and CO2 emissions for biomass chemical looping gasification to power generation. Renew Energy 176:366–387. https://doi.org/10.1016/j.renene.2021.05.067

    Article  CAS  Google Scholar 

  5. Ong HC, Chen W-H, Singh Y, Gan YY, Chen C-Y, Show PL (2020) A state-of-the-art review on thermochemical conversion of biomass for biofuel production: a TG-FTIR approach. Energ Convers Manage 209:112634. https://doi.org/10.1016/j.enconman.2020.112634

    Article  CAS  Google Scholar 

  6. Zhang L, Bai W (2021) Sustainability of crop-based biodiesel for transportation in China: barrier analysis and life cycle ecological footprint calculations. Technol Forecast Soc Change 164:120526. https://doi.org/10.1016/j.techfore.2020.120526

    Article  Google Scholar 

  7. Soares J, Demeke MM, Velde MV, Foulquié-Moreno MR, Kerstens D, Sels BF, Verplaetse A, Fernandes AAR, Thevelein JM, Fernandes PMB (2017) Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast. Bioresour Technol 244:234–242. https://doi.org/10.1016/j.biortech.2017.07.140

    Article  CAS  PubMed  Google Scholar 

  8. Kamani MH, Eş I, Lorenzo JM, Remize F, Roselló-Soto E, Barba FJ, Clark J, Khaneghah AM (2019) Advances in plant materials, food by-products, and algae conversion into biofuels: use of environmentally friendly technologies. Green Chem 21:3213–3231. https://doi.org/10.1039/C8GC03860K

    Article  CAS  Google Scholar 

  9. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ 37:19–27. https://doi.org/10.1016/j.renene.2011.06.045

    Article  CAS  Google Scholar 

  10. Gautam N, Chaurasia A (2020) Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy 190:116434. https://doi.org/10.1016/j.energy.2019.116434

    Article  CAS  Google Scholar 

  11. Milão RFD, Carminati HB, Araújo OQF, Medeiros JL (2019) Thermodynamic, financial and resource assessments of a large-scale sugarcane-biorefinery: prelude of full bioenergy carbon capture and storage scenario. Renew Sustain Energ Rev 113:109251. https://doi.org/10.1016/j.rser.2019.109251

    Article  Google Scholar 

  12. Raheem A, Zhao M, Dastyar W, Channa AQ, Ji G, Zhang Y (2019) Parametric gasification process of sugarcane bagasse for syngas production. Int J Hydrogen Energ 44(31):16234–16247. https://doi.org/10.1016/j.ijhydene.2019.04.127

    Article  CAS  Google Scholar 

  13. Nicodème T, Berchem T, Jacquet N, Richel A (2018) Thermochemical conversion of sugar industry by-products to biofuels. Renew Sustain Energ Rev 88:151–159. https://doi.org/10.1016/j.rser.2018.02.037

    Article  CAS  Google Scholar 

  14. ANEEL, National Electric Energy Agency. <www.aneel.gov.br/> (accessed December/2020)

  15. Velloso MFA, Martins FR, Pereira EB (2019) Case study for hybrid power generation combining hydro-and photovoltaic energy resources in the Brazilian semiarid region. Clean Technol Environ Policy 1(5):941–952. https://doi.org/10.1007/s10098-019-01685-1

    Article  Google Scholar 

  16. Teixeira ACR, Silva DL, Machado Neto LVB, Diniz ASAC, Sodré JR (2015) A review on electric vehicles and their interaction with smart grids: the case of Brazil. Clean Technol Envir Policy 17:841–857. https://doi.org/10.1007/s10098-014-0865

    Article  Google Scholar 

  17. Winemille KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Sáenz L (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129. https://doi.org/10.1126/science.aac7082

    Article  Google Scholar 

  18. Lessa ACR, dos Santos MA, Maddock JEL, dos Santos BC (2015) Emissions of greenhouse gases in terrestrial areas pre-existing to hydroelectric plant reservoirs in the Amazon: the case of Belo Monte hydroelectric plant. Renew Sustain Energy Rev 51:1728–1736. https://doi.org/10.1016/j.rser.2015.07.067

    Article  CAS  Google Scholar 

  19. Anderson EP, Jenkins CN, Heilpern S, Maldonado-Ocampo JA, Carvajal-Vallejos FM, Encalada AC, Tedesco PA (2018) Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci Adv 4(1):1642. https://doi.org/10.1126/sciadv.aao1642

    Article  Google Scholar 

  20. Energy research company. <www.epe.gov.br/> (accessed April/2020).

  21. Almeida CF, Maciel VG, Tsambe M, Cybis LFA (2017) Environmental assessment of a bi-fuel thermal power plant in an isolated power system in the Brazilian Amazon region. J Clean Prod 154:41–50. https://doi.org/10.1016/j.jclepro.2017.03.209

    Article  CAS  Google Scholar 

  22. Macedo WN, Monteiro LG, Corgozinho IM, Macêdo EM, Rendeiro G, Braga W, Bacha L (2016) Biomass based microturbine system for electricity generation for isolated communities in amazon region. Renew Energy 91:323–333. https://doi.org/10.1016/j.renene.2016.01.063

    Article  Google Scholar 

  23. Silva CMS, Carneiro ACO, Vital BR, Figueiró CG, Fialho LF, Magalhães MA, Carvalho AG, Cândido WL (2018) Biomass torrefaction for energy purposes-definitions and an overview of challenges and opportunities in Brazil. Renew Sustain Energ Rev 82:2426–2432. https://doi.org/10.1016/j.rser.2017.08.095

    Article  Google Scholar 

  24. Alves JLF, Silva JCG, Domenico MD, Galdino WVA, Andersen SLF, Alves RF, Sena RF (2021) Exploring açaí seed (Euterpe oleracea) pyrolysis using multi-component kinetics and thermodynamics assessment towards its bioenergy potential. Bioenerg Res 14:209–225. https://doi.org/10.1007/s12155-020-10175-y

    Article  CAS  Google Scholar 

  25. Souza CDR, Silva KC (2021) Energy potential of waste from Brazil nut (Bertholletia excelsa H.B.K.) for production of activated carbon. Res Soc Dev 10(2):e53310212698. https://doi.org/10.33448/rsd-v10i2.12698

    Article  Google Scholar 

  26. Scoles R, Gribel R (2015) Human influence on the regeneration of the Brazil nut tree (Bertholletia excelsa Bonpl., Lecythidaceae) at Capanã Grande Lake, Manicoré, Amazonas. Brazil Hum Ecol 43:843–854. https://doi.org/10.1007/s10745-015-9795-4

    Article  Google Scholar 

  27. Maciel-Silva FW, Mussatto SI, Forster-Carneiro T (2019) Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of açai processing industries residues. J Clean Prod 228:1131–1142. https://doi.org/10.1016/j.jclepro.2019.04.362

    Article  CAS  Google Scholar 

  28. Manzato L, Rabelo LCA, Souza SM, Silva CG, Sanches EA, Rabelo D, Mariuba LAM, Simonsen J (2017) New approach for extraction of cellulose from tucumã’s endocarp and its structural characterization. J Mol Struct 1143:229–234. https://doi.org/10.1016/j.molstruc.2017.04.088

    Article  CAS  Google Scholar 

  29. Hazeena SH, Sindhu R, Pandey A, Binod P (2020) Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. Bioresour technol 306:122873. https://doi.org/10.1016/j.biortech.2020.122873

    Article  CAS  Google Scholar 

  30. Zhang J, Koubaa A, Xing D, Wang H, Wang Y, Liu W, Zhang Z, Wang X, Wang Q (2020) Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions. Bioresour Technol 312:123586. https://doi.org/10.1016/j.biortech.2020.123586

    Article  CAS  PubMed  Google Scholar 

  31. Coelho RD, Lizcano JV, Barros THS, Barbosa FS, Leal DPV, Santos LC, Ribeiro NL, Fraga EF Jr, Martin DL (2019) Effect of water stress on renewable energy from sugarcane biomass. Renew Sustain Energ Rev 103:399–407. https://doi.org/10.1016/j.rser.2018.12.025

    Article  Google Scholar 

  32. IMME, Ministry of Mines and Energy. <www.mme.gov.br/> (accessed December/2020)

  33. Ignacio LHS, Santos PEA, Duarte CAR (2019) An experimental assessment of Eucalyptus urosemente energy potential for biomass production in Brazil. Renew Sustain Energ Rev 103:361–369. https://doi.org/10.1016/j.rser.2018.12.053

    Article  Google Scholar 

  34. Oliveira JL, da Silva JN, Martins MA, Pereira EG (2018) Gasification of waste from coffee and eucalyptus production as an alternative source of bioenergy in Brazil. Sustain Energy Techn Assess 27:159–166. https://doi.org/10.1016/j.seta.2018.04.005

    Article  Google Scholar 

  35. Solarin SA, Bello MO (2019) Interfuel substitution, biomass consumption, economic growth, and sustainable development: Evidence from Brazil. J Clean Prod 211:1357–1366. https://doi.org/10.1016/j.jclepro.2018.11.268

    Article  Google Scholar 

  36. Welfle A (2017) Balancing growing global bioenergy resource demands - Brazil’s biomass potential and the availability of resource for trade. Biomass Bioenerg 105:83–95. https://doi.org/10.1016/j.biombioe.2017.06.011

    Article  Google Scholar 

  37. Cervi WR, Lamparelli RAC, Seabra JEA, Junginger M, Hilst F (2019) Bioelectricity potential from ecologically available sugarcane straw in Brazil: a spatially explicit assessment. Biomass Bioenerg 122:391–399. https://doi.org/10.1016/j.biombioe.2019.02.001

    Article  Google Scholar 

  38. Flores JA, Konrad O, Flores CR, Schroder NT (2018) Inventory data on Brazilian Amazon’s non-wood native biomass sources for bioenergy production. Data Brief 20:1935–1941. https://doi.org/10.1016/j.dib.2018.09.050

    Article  PubMed  PubMed Central  Google Scholar 

  39. IBGE, Brazilian Institute of Geography and Statistics. <www.sidra.ibge.gov.br/>. (accessed January/2020)

  40. Araujo RO, Chaar JS, Queiroz LS, Rocha Filho GN, Costa CEF, da Silva GCT, Landers R, Costa MJF, Gonçalves AAS, Souza LKC (2019) Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions. Energ Convers Manage 196:821–830. https://doi.org/10.1016/j.enconman.2019.06.059

    Article  CAS  Google Scholar 

  41. Souza TNV, Vieira MGA, Silva MGC, Brasil DSB, Carvalho SML (2019) H3PO4-activated carbons produced from açai stones and Brazil nutshells: removal of basic blue 26 dye from aqueous solutions by adsorption. Environ Sci Pollut Res 26:28533–28547. https://doi.org/10.1007/s11356-019-04215-0

    Article  CAS  Google Scholar 

  42. SEDAP, Secretariat of Agricultural Development and Fisheries of the State of Pará. <www.sedap.pa.gov.br/>. (accessed December/2020)s

  43. Mendonça IM, Machado FL, Silva CC, Duvoisin S Jr, Takeno ML, Maia PJS, Manzato L, Freitas FA (2019) Application of calcined waste cupuaçu (Theobroma grandiflorum) seeds as a low-cost solid catalyst in soybean oil ethanolysis: statistical optimization. Energ Convers Manage 200:112095. https://doi.org/10.1016/j.enconman.2019.112095

    Article  CAS  Google Scholar 

  44. Ramos SNM, Danzl W, Ziegleder G, Efraim P (2016) Formation of volatile compounds during cupuassu fermentation: influence of pulp concentration. Food Res Int 87:161–167. https://doi.org/10.1016/j.foodres.2016.06.025

    Article  CAS  Google Scholar 

  45. Cantu-Jungles TM, Iacomini M, Cipriani TR, Cordeiro LMC (2017) Structural diversity of alkali-soluble polysaccharides from the fruit cell walls of tucumã (Astrocaryum aculeatum), a commelinid monocotyledon from the family Arecaceae. Plant Physiol Bioch 118:356–361. https://doi.org/10.1016/j.plaphy.2017.07.002

    Article  CAS  Google Scholar 

  46. Mendonça IM, Paes OARL, Maia PJS, Souza MP, Almeida RA, Silva CC, Duvoisin S Jr, Freitas FA (2019) New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): parameters optimization study. Renew Energ 130:103–110. https://doi.org/10.1016/j.renene.2018.06.059

    Article  CAS  Google Scholar 

  47. Anunciação PC, Giuffrida D, Murador DC, Paula Filho GX, Dugo G, Pinheiro-Sant’Ana HM, (2019) Identification and quantification of the native carotenoid composition in fruits from the Brazilian Amazon by HPLC–DAD–APCI/MS. J Food Compos Anal 83:103296. https://doi.org/10.1016/j.jfca.2019.103296

    Article  CAS  Google Scholar 

  48. Guimarães MG, Evaristo RBW, Ghesti BACM, GF, (2021) Green energy technology from buriti (Mauritia flexuosa L. f.) for Brazilian agro-extractive communities. SN Appl Sci 3:283–296. https://doi.org/10.1007/s42452-021-04278-0

    Article  CAS  Google Scholar 

  49. Lopes FCR, Pereira JC, Tannous K (2018) Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres. Bioresour Technol 270:294–302. https://doi.org/10.1016/j.biortech.2018.09.021

    Article  CAS  PubMed  Google Scholar 

  50. Tsai W-T, Jiang T-J, Lin Y-Q (2019) Conversion of de-ashed cocoa pod husk into high-surface-area microporous carbon materials by CO2 physical activation. J Mater Cycles Waste Manag 21:308–314. https://doi.org/10.1007/s10163-018-0791-9

    Article  CAS  Google Scholar 

  51. Tsai C-H, Tsai W-T, Liu S-C, Lin Y-Q (2018) Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature. Biomass Convers Bior 8:237–243. https://doi.org/10.1007/s13399-017-0259-5

    Article  CAS  Google Scholar 

  52. Nunes LA, Silva MLS, Gerber JZ, Kalid RA (2020) Waste green coconut shells: diagnosis of the disposal and applications for use in other products. J Clean Prod 255:120169. https://doi.org/10.1016/j.jclepro.2020.120169

    Article  Google Scholar 

  53. Rasheed T, Anwar MT, Ahmad N, Sher F, Khan SUD, Ahmad A, Wazeer I (2021) Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: a review. J Environ Manage 287:112257. https://doi.org/10.1016/j.jenvman.2021.112257

    Article  CAS  PubMed  Google Scholar 

  54. Onga HC, Chen W-H, Farooq A, Gan YY, Lee KT, Ashokkumar V (2019) Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renew Sustain Energ Rev 113:109266. https://doi.org/10.1016/j.rser.2019.109266

    Article  CAS  Google Scholar 

  55. Lu JW, Zhang S, Hai J, Lei M (2017) Status and perspectives of municipal solid waste incineration in China: a comparison with developed regions. Waste Manage 69:170–186. https://doi.org/10.1016/j.wasman.2017.04.014

    Article  Google Scholar 

  56. Cruz G, Silva AV, Da Silva JB, de Nazaré CR, de Souza ME (2020) Biofuels from oilseed fruits using different thermochemical processes: opportunities and challenges. Biofuel Bioprod Biorefin 14(3):696–719. https://doi.org/10.1002/bbb.2089

    Article  CAS  Google Scholar 

  57. Fernandez A, Saffe A, Pereyra R, Mazza G, Rodriguez R (2016) Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Appl Therm Eng 106:1157–1164. https://doi.org/10.1016/j.applthermaleng.2016.06.084

    Article  CAS  Google Scholar 

  58. Sukiran MA, Abnisa F, Daud WMAW, Bakar NA, Loh SK (2017) A review of torrefaction of oil palm solid wastes for biofuel production. Energ Convers Manag 149:101–120. https://doi.org/10.1016/j.enconman.2017.07.011

    Article  CAS  Google Scholar 

  59. Wang D, Jiang P, Zhang H, Yuan W (2020) Biochar production and applications in agro and forestry systems: a review. Sci Total Environ 723:137775. https://doi.org/10.1016/j.scitotenv.2020.137775

    Article  CAS  PubMed  Google Scholar 

  60. Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energ 129:695–716. https://doi.org/10.1016/j.renene.2017.04.035

    Article  CAS  Google Scholar 

  61. Chang SH (2020) Rice husk and its pretreatments for bio-oil production via fast pyrolysis: a review. Bioenergy Res 13:23–42. https://doi.org/10.1007/s12155-019-10059

    Article  Google Scholar 

  62. Raheem A, ZhaoDastyar MW, Channa AQ, Ji G, Zhang Y (2019) Parametric gasification process of sugarcane bagasse for syngas production. Int J Hydrogen Energy 44:16234–16247. https://doi.org/10.1016/j.ijhydene.2019.04.127

    Article  CAS  Google Scholar 

  63. Wang A, Austin D, Song H (2019) Investigations of thermochemical upgrading of biomass and its model compounds: opportunities for methane utilization. Fuel 246:443–453. https://doi.org/10.1016/j.fuel.2019.03.015

    Article  CAS  Google Scholar 

  64. Masud MH, Ananno AA, Arefn AME, Ahamed R, Das P, Joardder MUH (2019) Perspective of biomass energy conversion in Bangladesh. Clean Technol Envir Policy 21:719–731. https://doi.org/10.1007/s10098-019-01668-2

    Article  Google Scholar 

  65. Martinez-Valencia L, Camenzind D, Wigmosta M, Garcia-Perez M, Wolcott M (2021) Biomass supply chain equipment for renewable fuels production: a review. Biomass Bioenerg 148:106054. https://doi.org/10.1016/j.biombioe.2021.106054

    Article  CAS  Google Scholar 

  66. Andrade CS, Rosa LP, Da Silva NF (2011) Generation of electric energy in isolated rural communities in the Amazon Region a proposal for the autonomy and sustainability of the local populations. Renew Sustain Energy Rev 15(1):493–503. https://doi.org/10.1016/j.rser.2010.09.052

    Article  Google Scholar 

  67. Pinheiro G, Rendeiro G, Pinho J, Macedo E (2012) Sustainable management model for rural electrification: case study based on biomass solid waste considering the Brazilian regulation policy. Renew Energ 37(1):379–386. https://doi.org/10.1016/j.renene.2011.07.004

    Article  Google Scholar 

  68. Sánchez AS, Torres EA, Kalid RA (2015) Renewable energy generation for the rural electrification of isolated communities in the Amazon Region. Renew Sustain Energ Rev 49:278–290. https://doi.org/10.1016/j.rser.2015.04.075

    Article  Google Scholar 

  69. Itai Y, Santos R, Branquinho M, Malico I, Ghesti GF, Brasil AM (2014) Numerical and experimental assessment of a downdraft gasifier for electric power in Amazon using açaí seed (Euterpe oleracea Mart.) as a fuel. Renew Energ 66:662–669. https://doi.org/10.1016/j.renene.2014.01.007

    Article  CAS  Google Scholar 

  70. Pessôa TS, Ferreira LEL, Silva MP, Neto LMP, Nascimento BF, Fraga TJM, Jaguaribe EF, Cavalcanti JV, Sobrinh MAM (2019) Açaí waste beneficing by gasification process and its employment in the treatment of synthetic and raw textile wastewater. J Clean Prod 240:118047. https://doi.org/10.1016/j.jclepro.2019.118047

    Article  CAS  Google Scholar 

  71. Sato MK, Lima HV, Lima HV, Costa AN, Rodrigues S, Mooney SJ, Clarke M, Pedroso AJS, Maia CMBF (2020) Biochar as a sustainable alternative to açaí waste disposal in Amazon. Brazil Process Saf Environ 139:36–46. https://doi.org/10.1016/j.psep.2020.04.001

    Article  CAS  Google Scholar 

  72. Reis JS, Araujo RO, Lima VMR, Queiroz LS, Costa CEF, Pardauil JJR, Chaar JS, Rocha Filho GN, Souza LKC (2019) Combustion properties of potential Amazon biomass waste for use as fuel. J Therm Anal Calorim 138:3535–3539. https://doi.org/10.1007/s10973-019-08457-5

    Article  CAS  Google Scholar 

  73. Lira CS, Berruti FM, Palmisano P, Berruti F, Briens C, Pécora AAB (2013) Fast pyrolysis of Amazon tucumã (Astrocaryum aculeatum) seeds in a bubbling fluidized bed reactor. J Anal Appl Pyrol 99:23–31. https://doi.org/10.1016/j.jaap.2012.11.005

    Article  CAS  Google Scholar 

  74. Matos FB, Camacho JR, Rodrigues P, Guimarães SC Jr (2011) A research on the use of energy resources in the Amazon. Renew Sustain Energ Rev 15(6):3196–3206. https://doi.org/10.1016/j.rser.2011.04.012

    Article  Google Scholar 

  75. Azam M, Jahromy SS, Raza W, Jordan C, Harasek M, Winter F (2019) Comparison of the combustion characteristics and kinetic study of coal, municipal solid waste, and refuse-derived fuel: model-fitting methods. Energy Sci Eng 7:2646–2657. https://doi.org/10.1002/ese3.450

    Article  CAS  Google Scholar 

  76. Shah MA, Khan MNS, Kumar V (2018) Biomass residue characterizations for their potential application as biofuels. J Therm Anal Calorim 134:2137–2145. https://doi.org/10.1007/s10973-018-7560-9

    Article  CAS  Google Scholar 

  77. Paniagua S, Prado-Guerra A, Garcia AI, Calvo LF (2019) Bioenergy derived from an organically fertilized poplar plot: overall TGA and index estimation study for combustion, gasification, and pyrolysis processes. Biomass Convers Bior 9:749–760. https://doi.org/10.1007/s13399-019-00392-7

    Article  CAS  Google Scholar 

  78. Rambo MKD, Schmidt FL, Ferreira MMC (2015) Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta 144:696–703. https://doi.org/10.1016/j.talanta.2015.06.045

    Article  CAS  PubMed  Google Scholar 

  79. Gil MV, González-Vázquez MP, García R, Rubiera F, Pevida C (2019) Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energ Convers Manage 184:649–660. https://doi.org/10.1016/j.enconman.2019.01.093

    Article  CAS  Google Scholar 

  80. Riaza J, Gibbibs J, Chalmers H (2017) Ignition and combustion of single particles of coal and biomass. Fuel 202:650–655. https://doi.org/10.1016/j.fuel.2017.04.011

    Article  CAS  Google Scholar 

  81. Ozyuguran A, Yaman S (2017) Prediction of calorific value of biomass from proximate analysis. Energy Procedia 107:130–136. https://doi.org/10.1016/j.egypro.2016.12.149

    Article  Google Scholar 

  82. Chen D, Shuang E, Liu L (2018) Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. J Therm Anal Calorim 131:1899–1909. https://doi.org/10.1007/s10973-017-6585-9

    Article  CAS  Google Scholar 

  83. Pathomrotsakun J, Nakason K, Kraithong W, Khemthong P, Panyapinyopol B, Pavasant P (2020) Fuel properties of biochar from torrefaction of ground coffee residue: effect of process temperature, time, and sweeping gas. Biomass Conv Bioref 10:743–753. https://doi.org/10.1007/s13399-020-00632-1

    Article  CAS  Google Scholar 

  84. Saffe A, Fernandez A, Echegaray M, Mazza G, Rodrigues R (2019) Pyrolysis kinetics of regional agro-industrial wastes using isoconversional methods. Biofuels 10:245–257. https://doi.org/10.1080/17597269.2017.1316144

    Article  CAS  Google Scholar 

  85. Baroni ÉG, Tannous K, Rueda-Ordóñez YJ et al (2016) The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis. J Therm Anal Calorim 123:909–917. https://doi.org/10.1007/s10973-015-4707-9

    Article  CAS  Google Scholar 

  86. Santos VO, Queiroz LS, Araujo RO, Ribeiro FCP, Guimarães MN, Costa CEF, Chaar JS, Souza LKC (2020) Pyrolysis of acai seed biomass: kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresour Technol Reports 12:100553. https://doi.org/10.1016/j.biteb.2020.100553

    Article  Google Scholar 

  87. Lopes FCR, Tannous K, Rueda-Ordóñez YJ (2016) Combustion reaction kinetics of guarana seed residue applying isoconversional methods and consecutive reaction scheme. Bioresour Technol 219:392–402. https://doi.org/10.1016/j.biortech.2016.07.099

    Article  CAS  PubMed  Google Scholar 

  88. Kurji H, Valera-Medina A, Runyon J, Giles A, Pugh D, Marsh R, Valerio V (2016) Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines. Renew Energy 99:443–451. https://doi.org/10.1016/j.renene.2016.07.036

    Article  CAS  Google Scholar 

  89. Sarker TR, Nanda S, Dalai AK, Meda V (2021) A review of torrefaction technology for upgrading lignocellulosic biomass to solid biofuels. Bioenergy Res 1:25. https://doi.org/10.1007/s12155-020-10236-2

    Article  CAS  Google Scholar 

  90. Chai L, Saffron CM (2016) Comparing pelletization and torrefaction depots: optimization of depot capacity and biomass moisture to determine the minimum production cost. Appl Energy 163:387–395. https://doi.org/10.1016/j.apenergy.2015.11.018

    Article  Google Scholar 

  91. Prasad KM, Murugavelh S (2020) Experimental investigation and kinetics of tomato peel pyrolysis: performance, combustion and emission characteristics of bio-oil blends in diesel engine. J Cleaner Prod 254:120115. https://doi.org/10.1016/j.jclepro.2020.120115

    Article  CAS  Google Scholar 

  92. Lan K, Ou L, Park S, Kelly SS, English BC, Yu TE, Larson J, Yao Y (2021) Techno-economic analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States. Renew Sustain Energy Rev 143:110881. https://doi.org/10.1016/j.rser.2021.110881

    Article  Google Scholar 

  93. Morató T, Vaezi M, Kumar A (2020) Techno-economic assessment of biomass combustion technologies to generate electricity in South America: a case study for Bolivia. Renew Sustain Energy Rev 134:110154. https://doi.org/10.1016/j.rser.2020.110154

    Article  Google Scholar 

  94. Cervi WR, Lamparelli RAC, Gallo BC, Bordonal RO, Seabra JEA, Junginger M, Hilst FVD (2020) Mapping the environmental and techno-economic potential of biojet fuel production from biomass residues in Brazil. Biofuel Bioprod Biorefin 15(1):282–304. https://doi.org/10.1002/bbb.2161

    Article  CAS  Google Scholar 

  95. Nogueira CEC, de Souza SNM, Micuanski VC, Azevedo RL (2015) Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State. Brazil Renew Sustain Energy Rev 48:300–305. https://doi.org/10.1016/j.rser.2015.04.023

    Article  Google Scholar 

  96. Silva LA, dos Santos IFS, de Oliveira MG, Tiago Filho GL, Barros RM (2021) Rice husk energy production in Brazil: an economic and energy extensive analysis. J Cleaner Prod 290:125188. https://doi.org/10.1016/j.jclepro.2020.125188

    Article  Google Scholar 

  97. Anshar M, Ani FN, Kader AS (2014) The utilization potential of rice husk as an alternative energy source for power plants in Indonesia. Adv Mater Res 845:494–498. https://doi.org/10.4028/www.scientific.net/AMR.845.494

    Article  Google Scholar 

  98. Silveira ARR, Nadaleti WC, Przybyla G, Belli Filho P (2019) Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: thermal and electrical energy. Renew energy 134:1003–1016. https://doi.org/10.1016/j.renene.2018.11.063

    Article  CAS  Google Scholar 

  99. Ali J, Rasheed T, Afreen M, Anwar MT, Nawaz Z, Anwar H, Rizwan K (2020) Modalities for conversion of waste to energy — challenges and perspectives. Sci Total Environ 727:138610. https://doi.org/10.1016/j.scitotenv.2020.138610

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Federal University of Amazonas (Universiade Federal do Amazonas), Amazonas State Research Foundation (FAPEAM)-PAMEQ-062.01094/2019, and a grant from the National Council for Scientific and Technological Development (CNPq) No 425522/2018–0. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

ROA, FCPR, and VOS: conceptualization, writing, original draft, formal analysis, and investigation. VMRL, JLS, and JESV: writing and investigation. JSC, NPSF, and AMP: review and editing, visualization, and funding acquisition. LKCS: supervision, conceptualization, methodology, writing—review and editing, funding acquisition, and project administration.

Corresponding author

Correspondence to Luiz K. C. de Souza.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, R.O., Ribeiro, F.C.P., Santos, V.O. et al. Renewable Energy from Biomass: an Overview of the Amazon Region. Bioenerg. Res. 15, 834–849 (2022). https://doi.org/10.1007/s12155-021-10308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10308-x

Keywords

Navigation