Skip to main content
Log in

Role of Temperature in Sludge Composting and Hyperthermophilic Systems: a Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The utilization of nutrients in sewage sludge partly alleviates the economic and environmental constraints, and the composting process has been proved a cost-efficient and simple approach for the recycling of sewage sludge. During the bio-oxidative process, the thermophilic phase is considered to be the most effective stage for the biodegradation of organic matter in sewage sludge composting systems. However, the maximum temperatures of conventional thermophilic composting systems only reach approximately 55–60 °C because of the activity limitations of thermophiles at higher temperatures. Notably, increasing temperatures can accelerate the humification process and shorten the composting cycle. Therefore, the effect of rising temperature on sewage sludge composting was examined as a specific mechanism. Further, the consequent hyperthermophilic composting (HTC) system created by rising temperatures was reviewed. Moreover, the potential techno-economic advantages and future challenges of HTC systems were discussed. Finally, the microbial communities necessary to ensure the efficiency of HTC systems were analyzed and suitable hyperthermophiles for sludge HTC systems were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study can be found from the corresponding author and the data will be released on reasonable request.

Code Availability

Not applicable

Abbreviations

OM:

Organic matter

TC:

Thermophilic composting

HTC:

Hyperthermophilic composting

CTC:

Continuous thermophilic composting

RPBA:

Recyclable plastic bulking agent

EPS:

Extracellular polymeric substances

LB-EPS:

Loosely bound EPS

TB-EPS:

Tightly bound EPS

BVS:

Biodegradable volatile solids

DO:

Dissolved oxygen

HSs:

Humic substances

ARGs:

Antibiotic resistance genes

MGEs:

Mobile genetic elements

References

  1. Guo J, Fang F, Yan P, Chen Y (2020) Sludge reduction based on microbial metabolism for sustainable wastewater treatment. Bioresour Technol 297:122506. https://doi.org/10.1016/j.biortech.2019.122506

    Article  CAS  PubMed  Google Scholar 

  2. Zhou W, Liu M, Chai Y, Chen Y, Chen M, Wei Y, Min Y (2018) Discussion on establishment of technical standard system of domestic wastewater in villages and towns of China. Water Wastewater Engin 44(9):2–14. https://doi.org/10.13789/j.cnki.wwe1964.2018.0029

    Article  Google Scholar 

  3. Tan XB, Yang LB, Zhang WW, Zhao XC (2020) Lipids production and nutrients recycling by microalgae mixotrophic culture in anaerobic digestate of sludge using wasted organics as carbon source. Bioresour Technol 297:122379. https://doi.org/10.1016/j.biortech.2019.122379

    Article  CAS  PubMed  Google Scholar 

  4. Solmaz A, Işik M (2019) Effect of sludge retention time on biomass production and nutrient removal at an algal membrane photobioreactor. Bioenerg Res 12:197–204. https://doi.org/10.1007/s12155-019-9961-4

    Article  CAS  Google Scholar 

  5. Nazia H, Morni N (2020) Co-pelletization of microalgae-sewage sludge blend with sub-bituminous coal as solid fuel feedstock. Bioenerg Res 13:618–629. https://doi.org/10.1007/s12155-019-10061-2

    Article  CAS  Google Scholar 

  6. Kubátová P, Hejcman M, Száková J (2016) Effects of sewage sludge application on biomass production and concentrations of Cd, Pb and Zn in shoots of salix and populus clones: Improvement of phytoremediation efficiency in contaminated soils. Bioenerg Res 25(3):1–11. https://doi.org/10.1007/s12155-016-9727-1

    Article  CAS  Google Scholar 

  7. Fischer D, Erben G, Dunst G, Glaser B (2018) Dynamics of labile and stable carbon and priming effects during composting of sludge and lop mixtures amended with low and high amounts of biochar. Waste Manage 78:880–893. https://doi.org/10.1016/j.wasman.2018.06.056

    Article  CAS  Google Scholar 

  8. Kulikowska D, Sindrewicz S (2018) Effect of barley straw and coniferous bark on humification process during sewage sludge composting. Waste Manage 79:207–213. https://doi.org/10.1016/j.wasman.2018.07.042

    Article  CAS  Google Scholar 

  9. Phoungthong K, Zhang H, Shao LM, He PJ (2018) Leaching characteristics and phytotoxic effects of sewage sludge biochar. J Mater Cycles Waste 20(4):2089–2099. https://doi.org/10.1007/s10163-018-0763-0

    Article  CAS  Google Scholar 

  10. Meng L, Zhang S, Gong H, Zhang X, Wu C, Li W (2018) Improving sewage sludge composting by addition of spent mushroom substrate and sucrose. Bioresour Technol 253:197–203. https://doi.org/10.1016/j.biortech.2018.01.015

    Article  CAS  PubMed  Google Scholar 

  11. Lian Y, Zhang S, Wen Q, Chen Z, Yao W (2016) Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. Bioresour Technol 204:185–191. https://doi.org/10.1016/j.biortech.2016.01.004

    Article  CAS  Google Scholar 

  12. Zhang J, Chen G, Sun H, Zhou S, Zou G (2016) Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Bioresour Technol 200:876. https://doi.org/10.1016/j.biortech.2015.11.016

    Article  CAS  PubMed  Google Scholar 

  13. Ramdani N, Hamou A, Lousdad A, Al-Douri Y (2015) Physicochemical characterization of sewage sludge and green waste for agricultural utilization. Environ Technol 36(9–12):1594–1604. https://doi.org/10.1080/09593330.2014.998716

    Article  CAS  PubMed  Google Scholar 

  14. Sierra J, Chopart JL, Guindé L (2016) Optimization of biomass and compost management to sustain soil organic matter in energy cane cropping systems in a tropical polluted soil: a modelling study. Bioenerg Res 9:798–808. https://doi.org/10.1007/s12155-016-9729-z

    Article  CAS  Google Scholar 

  15. Boruszko D (2019) Research of effective microorganisms on dairy sewage sludge stabilization. J Ecol Eng 20(3):241–252. https://doi.org/10.12911/22998993/99787

    Article  Google Scholar 

  16. Onwosi CO, Igbokwe VC, Odimba JN, Eke IE, Nwankwoala MO, Iroh IN, Ezeogu LI (2017) Composting technology in waste stabilization: On the methods, challenges and future prospects. J Environ Manage 190:140–157. https://doi.org/10.1016/j.jenvman.2016.12.051

    Article  CAS  PubMed  Google Scholar 

  17. Li Z, Lu H, Ren L, Li H (2013) Experimental and modeling approaches for food waste composting: A review. Chemosphere 93(7):1247–1257. https://doi.org/10.1016/j.chemosphere.2013.06.064

    Article  CAS  PubMed  Google Scholar 

  18. Raut MP, William SPMP, Bhattacharyya JK, Chakrabarti T, Devotta S (2008) Microbial dynamics and enzyme activities during rapid composting of municipal solid waste – A compost maturity analysis perspective. Bioresour Technol 99(14):6512–6519. https://doi.org/10.1016/j.biortech.2007.11.030

    Article  CAS  PubMed  Google Scholar 

  19. Zheng J, Wen QX, Chen ZQ, Zhang SH (2015) Effect of aeration rate on composting of penicillin mycelial dreg. J Environ Sci 37:172–178. https://doi.org/10.1016/j.jes.2015.03.020

    Article  CAS  Google Scholar 

  20. Lin XG, Wang YM, Wei SP, Chen RR, Jing ZW (2015) N2O emissions and nitrogen transformation during windrow composting of dairy manure. J Environ Manage 160:121–127. https://doi.org/10.1016/j.jenvman.2015.06.021

    Article  CAS  PubMed  Google Scholar 

  21. Toledo M, Gutiérrez MC, Siles JA, Martín MA (2018) Full-scale composting of sewage sludge and market waste: Stability monitoring and odor dispersion modeling. Environ Res 167:739–750. https://doi.org/10.1016/j.envres.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  22. Cui P, Liao H, Bai Y, Li X, Zhou S (2019) Hyperthermophilic composting reduces nitrogen loss via inhibiting ammonifiers and enhancing nitrogenous humic substance formation. Sci Total Environ 692:98–106. https://doi.org/10.1016/j.scitotenv.2019.07.239

    Article  CAS  PubMed  Google Scholar 

  23. Robledo-Mahón T, Martín MA, Gutiérrez MC, Toledo M, González I, Aranda E, Chica AF, Calvo C (2019) Sewage sludge composting under semi-permeable film at full-scale: Evaluation of odour emissions and relationships between microbiological activities and physico-chemical variables. Environ Res 177:108624. https://doi.org/10.1016/j.envres.2019.108624

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Hou Y, Li Z, Yu Z, Zhou S (2020) Hyperthermophilic composting of sewage sludge accelerates humic acid formation: elemental and spectroscopic evidence. Waste Manage 103:342–351. https://doi.org/10.1016/j.wasman.2019.12.053

    Article  CAS  Google Scholar 

  25. Yamada Y, Kawase Y (2006) Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption. Waste Manage 26(1):49–61. https://doi.org/10.1016/j.wasman.2005.03.012

    Article  CAS  Google Scholar 

  26. Yu Z, Tang J, Liao H, Liu X, Zhou P, Zhi C, Christopher R, Zhou S (2018) The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour Technol 265:146–154. https://doi.org/10.1016/j.biortech.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen TB, Shima K (2019) Composting of sewage sludge with a simple aeration method and its utilization as a soil fertilizer. Environ Manage 63(4):455–465. https://doi.org/10.1007/s00267-017-0963-8

    Article  PubMed  Google Scholar 

  28. Rich N, Bharti A (2015) Assessment of different types of in-vessel composters and its effect on stabilization of MSW compost. Int Res J Eng Techno (IRJET) 02(03):37–42

    Google Scholar 

  29. Miyatake F, Iwabuchi K (2005) Effect of high compost temperature on enzymatic activity and species diversity of culturable bacteria in cattle manure compost. Bioresour Technol 96(16):1821–1825. https://doi.org/10.1016/j.biortech.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  30. Oshima T, Moriya T (2008) A preliminary analysis of microbial and biochemical properties of high-temperature compost. Ann N Y Acad Sci 1125(1):338–344. https://doi.org/10.1196/annals.1419.012

    Article  CAS  PubMed  Google Scholar 

  31. Moriya T, Hikota T, Yumoto I, Ito T, Terui Y, Yamagishi A, Oshima T (2011) Calditerricola satsumensis gen. nov., sp. nov. and Calditerricola yamamurae sp. nov., extreme thermophiles isolated from a high-temperature compost. Int J Syst Evol Micr 61(3):631–636. https://doi.org/10.1099/ijs.0.018416-0

  32. Trautmann N, Krasny M (1998) Composting in the classroom: Scientific Inquiry for high school students. Kendall/Hunt Publishing Company, pp. 6

  33. Liao H, Lu X, Rensing C, Friman VP, Geisen S, Chen Z, Yu Z, Wei Z, Zhou S, Zhu Y (2017) Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environ Sci Technol 52(1):266–276. https://doi.org/10.1021/acs.est.7b04483

    Article  CAS  PubMed  Google Scholar 

  34. Cheng Y, Inamori R, Ruike K, Inamori Y, Zhang Z (2018) Optimum dosage of hyper-thermophilic aerobic compost (HTAC) produced from sewage sludge for rice yield. Int J Biol 10(3):27. https://doi.org/10.5539/ijb.v10n3p27

    Article  CAS  Google Scholar 

  35. Moreno J (2015) Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresour Technol 175:406–416. https://doi.org/10.1016/j.biortech.2014.10.123

    Article  CAS  PubMed  Google Scholar 

  36. Zeng GM, Hong LH, Dan LH, Xing ZY, Rong QJ, Man Y, Hong YY, Jia CZ, Ren YW, Xiao LL (2009) Effect of inoculating white-rot fungus during different phases on the compost maturity of agricultural wastes. Process Biochem 44(4):396–400. https://doi.org/10.1016/j.procbio.2008.11.012

  37. Long YY, Fang Y, Zhang C, Du Y, Shentu J, Shen DS (2015) Degradation of polychlorinated biphenyls by sequential anaerobic–aerobic composting. Water Air Soil Poll 226(3):44. https://doi.org/10.1007/s11270-015-2333-6

  38. Xiao Y, Zeng GM, Yang ZH, Ma YH, Huang C, Shi WJ, Xu ZY, Huang J, Fan CZ (2011) Effects of continuous thermophilic composting (CTC) on bacterial community in the active composting process. Microb Ecol 62(3):599–608. https://doi.org/10.1007/s00248-011-9882-z

    Article  PubMed  Google Scholar 

  39. Kulikowska D (2016) Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Manage 49:196–203. https://doi.org/10.1016/j.wasman.2016.01.005

  40. Bialobrzewski I, Miks-Krajnik M, Dach J, Markowski M, Czekala W, Gluchowska K (2015) Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms. Waste Manage 43:72–83. https://doi.org/10.1016/j.wasman.2015.05.036

    Article  CAS  Google Scholar 

  41. Meng L, Li W, Zhang S, Wu C, Lv L (2016) Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw. Bioresour Technol 226:39–45. https://doi.org/10.1016/j.biortech.2016.11.054

  42. Bialobrzewski I, Miks-Krajnik M, Dach J, Markowski M, Czekala W, Gluchowska K (2015) Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms. Waste Manage 43:72–83. https://doi.org/10.1016/j.wasman.2015.05.036

  43. Wang C, Dong D, Strong PJ, Zhu W, Ma Z, Qin Y, Wu W (2017) Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome 5(1):103. https://doi.org/10.1186/s40168-017-0324-0

  44. Ishii K, Fukui M, Takii S (2000) Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 89(5):768–777. https://doi.org/10.1046/j.1365-2672.2000.01177.x

  45. Fashola M, Ngole-Jeme V, Babalola O (2015) Diversity of acidophilic bacteria and archaea and their roles in bioremediation of acid mine drainage. Brit Microbiol Res J 8(3):443–456. https://doi.org/10.9734/BMRJ/2015/14365

  46. Hashimoto K, Doi T, Okuda T, Nishijima W, Nishimura K (2015) Function of wood chips for composting of sewage sludge by thermophilic and aerobic digestion. J Residuals Sci Technol 12(2):53–59. https://doi.org/10.12783/issn.1544-8053/12/2/3

  47. Lieph R, Veloso FA, Holmes DS (2006) Thermophiles like hot T. Trends Microbiol 14(10):423–426. https://doi.org/10.1016/j.tim.2006.08.004

  48. Das R, Gerstein M (2000) The stability of thermophilic proteins: a study based on comprehensive genome comparison. Funct Integr Genomics 1(1):76–88. https://doi.org/10.1007/s101420000003 

  49. Redman RS, Litvintseva A, Sheehan KB, Henson JM, Rodriguez R (1999) Fungi from geothermal soils in Yellowstone National Park. Appl Environ Microbiol 65(12):5193. https://doi.org/10.1089/oli.1.1999.9.549

  50. Qian X, Sun W, Gu J, Wang XJ, Zhang YJ, Duan ML, Li HC, Zhang RR (2016) Reducing antibiotic resistance genes, integrons, and pathogens in dairy manure by continuous thermophilic composting. Bioresour Technol 220:425–432. https://doi.org/10.1016/j.biortech.2016.08.101

  51. Kinet RDJ, Hiligsmann S, Thonart P, Delhalle L, Taminiau B, Daube G, Delvigne F (2015) Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: Toward a microbial resource management approach. Bioresour Technol 189:138–144. https://doi.org/10.1016/j.biortech.2015.04.010

  52. Bhatia S, Sharma DK (2012) Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T. Environ Sci Poll Res 19(8):3491–3497. https://doi.org/10.1007/s11356-012-0884-2 

  53. Zhao Z, Selvam A, Wong WC (2011) Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03 on the biodegradation of phenanthrene in bioslurry system. J Hazard Mater 190 (1–3):345–350. https://doi.org/10.1016/j.jhazmat.2011.03.042

  54. Zhao Z, Wong JW-C (2010) Rapid biodegradation of benzo[a]pyrene by Bacillus subtilis BUM under thermophilic condition. Environ Eng Sci 27(11):939–945. https://doi.org/10.1089/ees.2010.0101

  55.  Deive FJ, Domínguez A, Barrio T, Moscoso F, Morán P, Longo MA, Sanromán MA (2010) Decolorization of dye Reactive Black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain). J Hazard Mater 182 (1–3):735–742. https://doi.org/10.1016/j.jhazmat.2010.06.096

  56. Yuan J, Chadwick D, Zhang D, Li G, Chen S, Luo W, Du L, He S, Peng S (2016) Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting. Waste Manage 56:403–410. https://doi.org/10.1016/j.wasman.2016.07.017

  57. Xu Z, Zhang X, Zhou J, Xiang L (2018) Technical review of dewatering process for excess sludge of municipal sewage plant. Water Purif Technol 37(2):38–44. https://doi.org/10.15890/j.cnki.jsjs.2018.02.007

  58. Li YY, Jin YY, Li H, Nie YF (2010) Effects and kinetics model of combined alkaline and thermal sludge treatment. China Environ Sci 30(9):1230–1234. https://doi.org/10.3724/SP.J.1088.2010.00432

  59. Yan M, Prabowo BY, He L, Fang ZM, Xu ZG, Hu YJ (2017) Effect of inorganic coagulant addition under hydrothermal treatment on the dewatering performance of excess sludge with various dewatering conditions. J Mater Cycles Waste Manage 19(3):1279–1287. https://doi.org/10.1007/s10163-016-0522-z 

  60. Yu J, Guo M, Xu X, Guan B (2014) The role of temperature and CaCl2 in activated sludge dewatering under hydrothermal treatment. Water Res 50:10–17. https://doi.org/10.1016/j.watres.2013.11.034

  61. Yan L, Fang HHP (2003) Influences of extracellular polymeric substances (EPS) on flocculation, settling and dewatering of activated sludge. Crit Rev Environ Sci Technol 33(3):237–273. https://doi.org/10.1080/10643380390814479

  62. Ma W, Zhao L, Liu H, Liu Q, Ma J (2017) Improvement of sludge dewaterability with modified cinder via affecting EPS. Front Env Sci Eng 11(6):19. https://doi.org/10.1007/s11783-017-0967-x

  63. Xin F, Deng J, Lei H, Tao B, Fan Q, Li Z (2009) Dewaterability of waste activated sludge with ultrasound conditioning. Bioresour Technol 100(3):1074–1081. https://doi.org/10.1016/j.biortech.2008.07.055

  64. Li XY, Yang SF (2007) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41(5):1022–1030. https://doi.org/10.1016/j.watres.2006.06.037 

  65. Geyik AG, Cecen F (2014) Production of protein- and carbohydrate-EPS in activated sludge reactors operated at different carbon to nitrogen ratios, J. Chem. Technol. Biotechnol 91(2): 522–531. https://doi.org/10.1002/jctb.4608

  66. Mikkelsen LH, Keiding K (2002) Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Res 36(10):2451–2462. https://doi.org/10.1016/s0043-1354(01)00477-8

  67. Wang L, Li A (2015) Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: The dewatering performance and the characteristics of products. Water Res 68:291–303. https://doi.org/10.1016/j.watres.2014.10.016

  68. Wang W, Liu W, Wang L (2015) Characteristics research on sewage sludge under thin-layered hot-press treatment. Desalin Water Treat 57(44):1–7. https://doi.org/10.1080/19443994.2015.1110538

  69. Bohacz J (2018) Microbial strategies and biochemical activity during lignocellulosic waste composting in relation to the occurring biothermal phases. J Environ Manage 206:1052–1062. https://doi.org/10.1016/j.jenvman.2017.11.077

  70. Komilis DP (2006) A kinetic analysis of solid waste composting at optimal conditions. Waste Manag 26(1):82-91. https://doi.org/10.1016/j.wasman.2004.12.021

  71. Bari QH, Koenig A, Tao G (2000) Kinetic analysis of forced aeration composting- I. Reaction rates and temperature. Waste Manage Res 18(4):303–312. https://doi.org/10.1177/0734242X0001800402

  72. He F, Yu R, Zhang Y, Zhu J, Sun P (2015) Effects of ash forming temperature on water-soluble fraction of biomass ash and it’s elements. T Chinese Soc Agric Engin (TCSAE) 31(8):227–232. https://doi.org/10.3969/j.issn.1002-6819.2015.08.033

  73. Reinscheid UM, Bauer MP, Müller R (1996) Biotransformation of halophenols by a thermophilic Bacillus sp. Biodegradation 7(6):455–461. https://doi.org/10.1007/BF00115292

  74. Gao X, Tan W, Zhao Y, Wu J, Sun Q, Qi H, Xie X, Wei Z (2019) Diversity in the mechanisms of humin formation during composting with different materials. Environ Sci Technol 53(7):3653–3662. https://doi.org/10.1021/acs.est.8b06401

  75. Li S, Li D, Li J, Li G, Zhang B (2017) Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates. Bioresour Technol 245:1299–1302. https://doi.org/10.1016/j.biortech.2017.08.177

  76. Cai Y, He Y, He K, Gao H, Ren M, Qu G (2019) Degradation mechanism of lignocellulose in dairy cattle manure with the addition of calcium oxide and superphosphate. Environ Sci Poll Res 26(32):33683–33693. https://doi.org/10.1007/s11356-019-06444-9

  77. Wu X, Wei Y, Zheng J, Zhao X, Zhong W (2011) The behavior of tetracyclines and their degradation products during swine manure composting. Bioresour Technol 102(10):5924–5931. https://doi.org/10.1016/j.biortech.2011.03.007

  78. Lin H, Zhang J, Chen H, Wang J, Sun W, Zhang X, Yang Y, Wang Q, Ma J (2017) Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Sci Total Environ 607–608:725–732. https://doi.org/10.1016/j.scitotenv.2017.07.057

  79. Liao H, Zhao Q, Cui P, Chen Z, Yu Z, Geisen S, Friman V-P, Zhou S (2019) Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting. Environ Int 133:105203. https://doi.org/10.1016/j.envint.2019.105203

  80. Tang J, Zhuang L, Yu Z, Liu X, Wang Y, Wen P, Zhou S (2019) Insight into complexation of Cu(II) to hyperthermophilic compost-derived humic acids by EEM-PARAFAC combined with heterospectral two dimensional correlation analyses. Sci Total Environ 656:29–38. https://doi.org/10.1016/j.scitotenv.2018.11.357

  81. Bäumchen C, Arnd K, Bernward H, Juri S, Bernd M, Carsten D, Ghassem A, Jochen B (2007) Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on d-glucose and l-lactate. J Biotechnol 128(4):868–874. https://doi.org/10.1016/j.jbiotec.2007.01.001 

  82. Sauid SM, Murthy VVPS (2010) Effect of palm oil on oxygen transfer in a stirred tank bioreactor. J Appl Sci 10 (21):2745–2747. https://doi.org/10.3923/jas.2010.2745.2747

  83. Zhang J, Zhao Y (2012) Kinetic analysis of sludge composting and engineering inspiration. China Water Wastewater 28 (4):6–10. https://doi.org/10.3969/j.issn.1000-4602.2012.04.002

  84. Awasthi MK, Li J, Kumar S, Awasthi SK, Wang Q, Chen H, Wang M, Ren X, Zhang Z (2017) Effects of biochar amendment on bacterial and fungal diversity for co-composting of gelatin industry sludge mixed with organic fraction of municipal solid waste. Bioresour Technol 246:214–223. https://doi.org/10.1016/j.biortech.2017.07.068

  85. Tortosa G, Castellano-Hinojosa A, Correa-Galeote D, Bedmar EJ (2017) Evolution of bacterial diversity during two-phase olive mill waste (“alperujo”) composting by 16S rRNA gene pyrosequencing. Bioresour Technol 224:101–111. https://doi.org/10.1016/j.biortech.2016.11.098

  86. Fang Y, Jia X, Chen L, Lin C, Chen J (2019) Effect of thermotolerant bacterial inoculation on the microbial community during sludge composting. Can J Microbiol 65(2). https://doi.org/10.1139/cjm-2019-010

  87. Sebők F, Dobolyi C, Bobvos J, Szoboszlay S, Kriszt B, Magyar D (2016) Thermophilic fungi in air samples in surroundings of compost piles of municipal, agricultural and horticultural origin. Aerobiologia 32(2):255–263. https://doi.org/10.1007/s10453-015-9396-0

  88. Wang K, Yin X, Mao H, Chu C, Tian Y (2018) Changes in structure and function of fungal community in cow manure composting. Bioresour Technol 255:123–130. https://doi.org/10.1016/j.biortech.2018.01.064

  89. Hansgate AM, Schloss PD, Hay AG, Walker LP (2005) Molecular characterization of fungal community dynamics in the initial stages of composting. FEMS Microbiol Ecol 51 (2):209–214. https://doi.org/10.1016/j.femsec.2004.08.009

  90. Han Z, Sun D, Wang H, Li R, Bao Z, Qi F (2018) Effects of ambient temperature and aeration frequency on emissions of ammonia and greenhouse gases from a sewage sludge aerobic composting plant. Bioresour Technol 270:457–466. https://doi.org/10.1016/j.biortech.2018.09.048

  91. Koyama M, Nagao N, Syukri F, Rahim AA, Kamarudin MS, Toda T, Mitsuhashi T, Nakasaki K (2018) Effect of temperature on thermophilic composting of aquaculture sludge: NH3 recovery, nitrogen mass balance, and microbial community dynamics. Bioresour Technol 265:207–213. https://doi.org/10.1016/j.biortech.2018.05.109

  92. Vaz-Moreira I, Lopes AR, Falsen E, Schumann P, Nunes OC, Manaia CM (2008) Microbacterium luticocti sp. nov., isolated from sewage sludge compost. nt J Syst Evol Micr 58(7):1700–1704. https://doi.org/10.1099/ijs.0.65494-0

  93. Vaz-Moreira I, Figueira V, Lopes AR, Brandt ED, Manaia CM (2010) Candidimonas nitroreducens gen. nov., sp. nov. and Candidimonas humi sp. nov., isolated from sewage sludge compost. Int J Syst Evol Microbiol 61(Pt 9):2238–2246. https://doi.org/10.1099/ijs.0.021188-0

  94. Vaz-Mireura I, Mobre MF, Ferreira ACS, Schumann P, Nunes OC, Manaia CM (2008) Humibacter albus gen. nov., sp. nov., isolated from sewage sludge compost. Int J Syst Evol Micr 58(Pt 4):1014–1018. https://doi.org/10.1099/ijs.0.65266-0

  95. Rodriguez-Diaz M, Cerrone F, Sanchez-Peinado M, Santacruz-Calvo L, Pozo C, Lopez JG (2014) Massilia umbonata sp. nov., able to accumulate poly-β-hydroxybutyrate, isolated from a sewage sludge compost-soil microcosm. Int J Syst Evol Micr 64(Pt 1):131–137. https://doi.org/10.1099/ijs.0.049874-0

  96. Silóniz M-Id, Balsalobre L, Alba C, María-José V, Peinado JM (2002) Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res Microbiol 153(3):0–180. https://doi.org/10.1016/S0923-2508(02)01303-7

  97. Sakai M, Deguchi D, Hosoda A, Kawauchi T, Ikenaga M (2015) Ammoniibacillus agariperforans gen. nov., sp. nov., a thermophilic, agar-degrading bacterium isolated from compost. Int J Syst Evol Micr 65(Pt 2):570–577. https://doi.org/10.1099/ijs.0.067843-0

  98. Combet-Blanc Y, Ollivier B, Streicher C, Patel BKC, Dwivedi PP, Pot B, Prensier G, Garcia JL (1995) Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 45(1):9–16. https://doi.org/10.1099/00207713-45-1-9

  99. Shimaya C, Hashimoto T (2011) Isolation and characterization of novel thermophilic nitrifying Bacillus sp. from compost. Soil Sci Plant Nut 57(1):150–156. https://doi.org/10.1080/00380768.2010.548312

  100. Hartman PA, Ralph Wellerson J, Tetrault PA (1955) Bacillus stearothermophilus. Appl Microbiol 3(1):124–129. https://doi.org/10.1016/S0769-2609(86)80099-0

  101. Rees DC, Adams MW (1995) Hyperthermophiles: Taking the heat and loving it. Structure 3 (3):251-254. https://doi.org/10.1016/S0969-2126(01)00155-1

  102. Hartman PA, Ralph Wellerson J, Tetrault PA (1955) Bacillus stearothermophilus. Appl Microbiol 3 (1):124–129. https://doi.org/10.1016/S0769-2609(86)80099-0 

  103. Cáceres R, Magrí A, Marfà O (2015) Nitrification of leachates from manure composting under field conditions and their use in horticulture. Waste Manage 44:72–81. https://doi.org/10.1016/j.wasman.2015.07.039

  104. Nakhshiniev B, Perera C, Biddinika MK, Gonzales HB, Sumida H, Yoshikawa K (2014) Reducing ammonia volatilization during composting of organic waste through addition of hydrothermally treated lignocellulose. Int Biodeterior Biodegrad 96:58–62. https://doi.org/10.1016/j.ibiod.2014.08.011

  105. Wang X, Pan S, Zhang Z, Lin X, Zhang Y, Chen S (2017) Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community. Bioresour Technol 224:397–404. https://doi.org/10.1016/j.biortech.2016.11.076

  106. Courtens ENP, Spieck E, Vilchez-Vargas R, Bodé S, Boeckx P, Schouten S, Jauregui R, Pieper DH, Vlaeminck SE, Boon N (2016) A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal. ISME J 10(9):2293–2303. https://doi.org/10.1038/ismej.2016.8

  107. Xu X, Liu X, Li Y, Ran Y, Liu Y, Zhang Q, Li Z, He Y, Xu J, Di H (2017) High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil. Soil Biol Biochem 107:168–179. https://doi.org/10.1016/j.soilbio.2017.01.003

  108. Stetter KO (2013) A brief history of the discovery of hyperthermophilic life. Biochem Soc Trans 41:416-420. https://doi.org/10.1042/BST20120284

  109. Huang YLD, Shah GM, Chen W, Wang W, Xu Y, Huang H (2019) Hyperthermophilic pretreatment composting significantly accelerates humic substances formation by regulating precursors production and microbial communities. Waste Manage 92:89–96. https://doi.org/10.1016/j.wasman.2019.05.021

    Article  CAS  Google Scholar 

  110. Cui P, Chen Z, Zhao Q, Yu Z, Yi Z, Liao H, Zhou S (2018) Hyperthermophilic composting significantly decreases N2O emissions by regulating N2O-related functional genes. Bioresour Technol 272. https://doi.org/10.1016/j.biortech.2018.10.044 

  111. Volkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59(9):2918. https://doi.org/10.1002/bit.260420616

  112. Huber R, Kurr M, Jannasch HW, Stetter KO (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C. Nature 342(6251):833–834. https://doi.org/10.1038/342833a0

    Article  Google Scholar 

  113. Hartman PA, Ralph Wellerson J, Tetrault PA (1955) Bacillus stearothermophilus. Appl Microbiol 3(1):124–129. https://doi.org/10.1016/S0769-2609(86)80099-0

  114. Bustard MT, Burgess JG, Meeyoo V, Wright PC (2000) Novel opportunities for marine hyperthermophiles in emerging biotechnology and engineering industries. J Chem Technol Biot 75(12):1095–1109. https://doi.org/10.1002/1097-4660(200012)75:123.0.CO;2-3

  115. Sakuraba H, Goda S, Ohshima T (2010) Unique sugar metabolism and novel enzymes of hyperthermophilic archaea. Chem Rec 3(5):281–287. https://doi.org/10.1002/tcr.10066

  116. Segerer AH, Trincone A, Gahrtz M (1991) Stygiolobus azoricus gen. nov. sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order sulfolobales. Int J Syst Bacteriol 41(4):495–501. https://doi.org/10.1099/00207713-41-4-495

  117. Nakagawa S, Takai K, Horikoshi K, Sako Y (2004) Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Micr 54(Pt 2):329–335. https://doi.org/10.1099/ijs.0.02826-0

  118. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001

  119. Rees DC, Adams MW (1995) Hyperthermophiles: Taking the heat and loving it. Structure 3(3):251–254. https://doi.org/10.1016/S0969-2126(01)00155-1

  120. Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22(5):618–626. https://doi.org/10.1016/j.copbio.2011.06.010 

  121. Wu J, Zhao Y, Qi H, Zhao X, Yang T, Du Y, Zhang H, Wei Z (2017) Identifying the key factors that affect the formation of humic substance during different materials composting. Bioresour Technol 244:1193–1196. https://doi.org/10.1016/j.biortech.2017.08.100

  122. Şevik F, Tosun İ, Ekinci K (2018) The effect of FAS and C/N ratios on co-composting of sewage sludge, dairy manure and tomato stalks. Waste Manag 80:450–456. https://doi.org/10.1016/j.wasman.2018.07.051

  123. Yanagi Y,  Shindo H (2016) Assessment of long-term compost application on physical, chemical, and biological properties, as well as fertility, of soil in a field subjected to double cropping. Agr Sci 07(1):30–43. https://doi.org/10.4236/as.2016.71004

  124. Antizar-Ladislao B,  Turrion-Gomez JL (2008) Second-generation biofuels and local bioenergy systems. Biofuel Bioprod Bior 2(5):455–469. https://doi.org/10.1002/bbb.97

  125. Irvine G, Lamont ER, Antizar-Ladislao B. (2010) Energy from waste: Reuse of compost heat as a source of renewable energy. Int J Chem Eng (3):1–10. https://doi.org/10.1155/2010/627930

Download references

Acknowledgments

Y.L. appreciated the support from the National Natural Science Foundation of China (22078194) and National Key Research and Development Program (No. 2017YFE0127100).

Funding

This work was supported by the National Natural Science Foundation of China (22078194). YL also appreciated the support from the National Key Research and Development Program (No. 2017YFE0127100).

Author information

Authors and Affiliations

Authors

Contributions

Zhiquan Wang: conceptualization, investigation, methodology, experiment, software, formal analysis, and writing (original draft preparation).

Deyi Wu: methodology, formal analysis, and investigation.

Xinze Wang: methodology, formal analysis, and investigation.

Yan Lin: methodology, writing (review and editing), visualization, supervision, and funding acquisition.

Corresponding author

Correspondence to Yan Lin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publish

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, D., Lin, Y. et al. Role of Temperature in Sludge Composting and Hyperthermophilic Systems: a Review. Bioenerg. Res. 15, 962–976 (2022). https://doi.org/10.1007/s12155-021-10281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10281-5

Keywords

Navigation