Skip to main content

Advertisement

Log in

Superiority of the (100) Over the (111) Facets of the Nitrides for Hydrogen Evolution Reaction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In continuation of our previous DFT calculations on the possibility of using the earlier transition metal nitrides for catalyzing hydrogen evolution reaction, this work analyzes the (111) facets of these surfaces which are as dominant as the (100) when a polycrystalline catalyst is manufactured. Various hydrogen coverage on these surfaces is considered, the free energy diagram and overpotentials are predicted as well as the kinetics of hydrogen recombination and hydrogen evolution reaction. The outcome of this comprehensive investigation and comparison of activity between the (100) and (111) facets reveal that TaN is the most active surface in both facets with the (100) being more promising with regards to both thermodynamics and kinetics. This study suggests that for optimizing the efficiency in the experiments, surface engineering needs to be considered towards the synthesis of single-crystal structured catalysts rather than utilizing polycrystallines. All the results are also compared with the Pt (111) which is the most active hydrogen evolution catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from ref [25] and is shown with dashed line. The studied (111) surfaces are shown with solid lines

Fig. 2
Fig. 3

adapted from ref [25]

Fig. 4

adapted from ref [25]. In order to reach 2/8 coverage of H on TaN, − 0.45 V needs to be applied and this naturally results in more H coverage, thus some of the points are overlaying at − 0.45 V for TaN

Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

The VASP code was used for the DFT calculations of this manuscript and the corresponding details of that are provided in the manuscript.

References:

  1. Jamesh MI (2016) Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J Power Sources 333:213–236. https://doi.org/10.1016/j.jpowsour.2016.09.161

    Article  CAS  Google Scholar 

  2. Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974. https://doi.org/10.1126/science.1103197

    Article  CAS  PubMed  Google Scholar 

  3. Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326. https://doi.org/10.1016/j.pecs.2009.11.002

    Article  CAS  Google Scholar 

  4. Han N, Liu P, Jiang J, Ai L, Shao Z, Liu S (2018) Recent advances in nanostructured metal nitrides for water splitting. J Mater Chem A 6(41):19912–19933. https://doi.org/10.1039/C8TA06529B

    Article  CAS  Google Scholar 

  5. Chen WF, Muckerman JT, Fujita E (2013) Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun 49(79):8896–8909. https://doi.org/10.1039/c3cc44076a

    Article  CAS  Google Scholar 

  6. Xie J, Xie Y (2016) Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges. Chem—A Eur J 22(11):3588–3598. https://doi.org/10.1002/chem.201501120

    Article  CAS  Google Scholar 

  7. Han Y, Yue X, Jin Y, Huang X, Shen PK (2016) Hydrogen evolution reaction in acidic media on single-crystalline titanium nitride nanowires as an efficient non-noble metal electrocatalyst. J Mater Chem A 4(10):3673–3677. https://doi.org/10.1039/c5ta09976e

    Article  CAS  Google Scholar 

  8. Chen WF et al (2012) Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem—Int Ed 51(25):6131–6135. https://doi.org/10.1002/anie.201200699

    Article  CAS  Google Scholar 

  9. Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG (2013) Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 135(51):19186–19192. https://doi.org/10.1021/ja4081056

    Article  CAS  PubMed  Google Scholar 

  10. Xie J et al (2014) Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci 5(12):4615–4620. https://doi.org/10.1039/c4sc02019g

    Article  CAS  Google Scholar 

  11. Chen Z, Duan X, Wei W, Wang S, Ni B-J (2019) Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J Mater Chem A 7(25):14971–15005. https://doi.org/10.1039/C9TA03220G

    Article  CAS  Google Scholar 

  12. Li C, Baek J-B (2020) Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 5(1):31–40. https://doi.org/10.1021/acsomega.9b03550

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118(10):4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang M, Zhang L, He Y, Zhu H (2021) Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J Mater Chem A 9(9):5320–5363. https://doi.org/10.1039/D0TA12152E

    Article  CAS  Google Scholar 

  15. Callejas JF, Read CG, Roske CW, Lewis NS, Schaak RE (2016) Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem Mater 28(17):6017–6044. https://doi.org/10.1021/acs.chemmater.6b02148

    Article  CAS  Google Scholar 

  16. Peng X, Pi C, Zhang X, Li S, Huo K, Chu PK (2019) Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain Energy Fuels 3(2):366–381. https://doi.org/10.1039/C8SE00525G

    Article  CAS  Google Scholar 

  17. Fakioǧlu E, Yürüm Y, Veziroǧlu TN (2004) A review of hydrogen storage systems based on boron and its compounds. Int J Hydrogen Energy 29(13):1371–1376. https://doi.org/10.1016/j.ijhydene.2003.12.010

    Article  CAS  Google Scholar 

  18. Wang T-W, Wang T-L, Chou W-J, Wu L-F, Lin S-H (2021) First-principles investigation of the hydrogen evolution reaction of transition metal phosphides CrP, MnP, FeP, CoP, and NiP. Phys Chem Chem Phys 23(3):2305–2312. https://doi.org/10.1039/D0CP04789A

    Article  CAS  PubMed  Google Scholar 

  19. Yu G-Q et al (2021) The combined role of faceting and heteroatom doping for hydrogen evolution on a WC electrocatalyst in aqueous solution: a density functional theory study. J Phys Chem C 125(8):4602–4613. https://doi.org/10.1021/acs.jpcc.0c11104

    Article  CAS  Google Scholar 

  20. Pandey DK, Kagdada HL, Materny A, Singh DK (2021) Hybrid structure of ionic liquid and TiO2 nanoclusters for efficient hydrogen evolution reaction. J Phys Chem A 125(12):2653–2665. https://doi.org/10.1021/acs.jpca.0c10912

    Article  CAS  PubMed  Google Scholar 

  21. Zhang B, Fu X, Song L, Wu X (2020) Surface selectivity of Ni3S2 toward hydrogen evolution reaction: a first-principles study. Phys Chem Chem Phys 22(44):25685–25694. https://doi.org/10.1039/D0CP03845H

    Article  CAS  PubMed  Google Scholar 

  22. Abghoui Y, Garden AL, Hlynsson VF, Björgvinsdóttir S, Ólafsdóttir H, Skúlason E (2015) Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys Chem Chem Phys 17(7):4909–4918. https://doi.org/10.1039/C4CP04838E

    Article  CAS  PubMed  Google Scholar 

  23. Abghoui Y, Garden AL, Howalt JG, Vegge T, Skúlason E (2016) Electroreduction of N2to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments. ACS Catal 6(2):635–646. https://doi.org/10.1021/acscatal.5b01918

    Article  CAS  Google Scholar 

  24. Abghoui Y, Skúlason E (2017) Hydrogen evolution reaction catalyzed by transition-metal nitrides. J Phys Chem C 121(43):24036–24045. https://doi.org/10.1021/acs.jpcc.7b06811

    Article  CAS  Google Scholar 

  25. Skúlason E et al (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114(50):22374–22374. https://doi.org/10.1021/jp110913n

    Article  CAS  Google Scholar 

  26. Nørskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892. https://doi.org/10.1021/jp047349j

    Article  CAS  Google Scholar 

  27. Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4(11):3957–3971. https://doi.org/10.1021/cs500923c

    Article  CAS  Google Scholar 

  28. Kibsgaard J et al (2015) Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ Sci 8(10):3022–3029. https://doi.org/10.1039/c5ee02179k

    Article  CAS  Google Scholar 

  29. Jaramillo TF, Nørskov JK, Varley J, Grabow L, Kuhl K (2010) “The oxidation of water and the reduction of CO2 to fuels,” pp. 1–16. https://gcep.stanford.edu/pdfs/PE5v0XtfTasff29ZflqL4Q/2.7.2_Jaramillo_Public_Version_2012.pdf. Accessed 29 May 2021

  30. Nitopi S et al (2019) Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 119(12):7610–7672. https://doi.org/10.1021/acs.chemrev.8b00705

    Article  CAS  PubMed  Google Scholar 

  31. McEnaney JM et al (2017) Ammonia synthesis from N 2 and H 2 O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ Sci 10(7):1621–1630. https://doi.org/10.1128/IAI.73.7.3896-3902.2005

    Article  CAS  Google Scholar 

  32. Greeley J et al (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556. https://doi.org/10.1038/nchem.367

    Article  CAS  PubMed  Google Scholar 

  33. Abghoui Y, Skúlason E (2017) Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catal Today 286:69–77. https://doi.org/10.1016/j.cattod.2016.11.047

    Article  CAS  Google Scholar 

  34. Abghoui Y, Skúlason E (2017) Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides. Catal Today 286:78–84. https://doi.org/10.1016/j.cattod.2016.06.009

    Article  CAS  Google Scholar 

  35. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  36. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59(11):7413–7421. https://doi.org/10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  37. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  38. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985. https://doi.org/10.1063/1.1323224

    Article  CAS  Google Scholar 

  39. Markovic N (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45(4–6):117–229. https://doi.org/10.1016/S0167-5729(01)00022-X

    Article  CAS  Google Scholar 

  40. Skúlason E et al (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 9(25):3241–3250. https://doi.org/10.1039/b700099e

    Article  CAS  PubMed  Google Scholar 

  41. Karlberg GS, Jaramillo TF, Skúlason E, Rossmeisl J, Bligaard T, Nørskov JK (2007) Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys Rev Lett 99(12):126101. https://doi.org/10.1103/PhysRevLett.99.126101

    Article  CAS  PubMed  Google Scholar 

  42. Gohda Y, Schnur S, Groß A (2008) Influence of water on elementary reaction steps in electrocatalysis. Faraday Discuss 140:233–244. https://doi.org/10.1039/b802270d

    Article  CAS  PubMed  Google Scholar 

  43. Abghoui Y (2017) Novel electrocatalysts for sustainable ammonia production at ambient conditions. University of Iceland, Reykjavik

    Google Scholar 

  44. Garden AL, Abghoui Y, Skúlason E (2018) Applications of transition metal nitrides as electrocatalysts. In: Justin SL, Hargreaves SJ, McFarlane AR (eds) Alternative catalytic materials: carbides nitrides, phosphides and amorphous boron alloys. Royal society of chemistry, Cambridge, pp 133–163

    Chapter  Google Scholar 

  45. Nørskov JK et al (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23. https://doi.org/10.1149/1.1856988

    Article  CAS  Google Scholar 

  46. Xiao M, Luo B, Lyu M, Wang S, Wang L (2018) Single-crystalline nanomesh tantalum nitride photocatalyst with improved hydrogen-evolving performance. Adv Energy Mater 8(1):1701605. https://doi.org/10.1002/aenm.201701605

    Article  CAS  Google Scholar 

  47. Zhang F, Xi S, Lin G, Hu X, Lou XWD, Xie K (2019) Metallic porous iron nitride and tantalum nitride single crystals with enhanced electrocatalysis performance. Adv Mater 31(7):1806552. https://doi.org/10.1002/adma.201806552

    Article  CAS  Google Scholar 

  48. Gillan EG, Kaner RB (1994) Rapid solid-state synthesis of refractory nitrides. Inorg Chem 33(25):5693–5700. https://doi.org/10.1021/ic00103a015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support is acknowledged from the Icelandic Research Fund grant numbers 185051051-3, 207056-051, 207056-052, and the Research Fund of the University of Iceland. The calculations were carried out on the Icelandic high-performance computer, Garpur.

Funding

Icelandic research Fund grant numbers 185051051-3, 207056-051, 207056-052, and the Research Fund of the University of Iceland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Abghoui.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abghoui, Y. Superiority of the (100) Over the (111) Facets of the Nitrides for Hydrogen Evolution Reaction. Top Catal 65, 262–269 (2022). https://doi.org/10.1007/s11244-021-01474-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01474-5

Keywords

Navigation