Skip to main content

Advertisement

Log in

Grain size engineering and growth mechanism in hydrothermal synthesis of Bi0.5Na0.5TiO3 thin films on Nb-doped SrTiO3 substrates

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Considering the full utilization of energy and pursuing thin-film capacitors with high energy-storage density, the grain size engineering is used to adjust domain size, in order to enhance the energy-storage efficiency and energy-storage density of thin-film capacitors. Therefore, in this work, lead-free Bi0.5Na0.5TiO3 (BNT) films with designed grain size were grown on Nb-doped SrTiO3 (Nb:STO) (001) single-crystalline substrates by modulating the mineralizer concentrations via hydrothermal synthesis. The nature of epitaxial growth near the single-crystalline substrates was proved by transmission electron microscopy (TEM). In addition, the phenomenon of the decrease of grain size and the increase of [100] in-plane orientation with the decline of mineralizer concentrations were clarified by grazing-angle incidence X-ray diffraction (GIXRD) and field emission scanning electron microscope (FESEM). By reducing the grain size, an ultrahigh energy-storage efficiency (η) of 75.56% and superior the recoverable energy-storage density (Wrec) of 16.47 J/cm3 were acquired in pure Bi0.5Na0.5TiO3 films. Furthermore, the fine-grained film exhibits weak dependence on the frequency and has excellent anti-fatigue property. Therefore, hydrothermal synthesis is an efficient, inexpensive, and easy method, which is the most promising way to adjust grain size and energy storage of the film capacitor.

By decreasing the concentration of mineralizer, the thinner film with a smaller grain size can be obtained, which greatly improves the Pr and applied electric field of the BNT film. Hence, an ultrahigh η of 75.56% and superior Wrec of 16.47 J/cm3 were acquired in pure BNT film.

Highlights

  • Various grain size of BNT films are grown on STO by hydrothermal synthesis.

  • The growth mechanism of BNT films with different grain size is discussed in detail.

  • The energy-storage performance of BNT films is enhanced by decreasing grain size.

  • A superior energy-storage efficiency of 75.56% is acquired in pure BNT film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eom C, Trolier-McKinstry S (2012) Thin-film piezoelectric MEMS. Mrs Bull 37:1007–1017

    Article  CAS  Google Scholar 

  2. Jeon YB, Sood R, Jeong JH, Kim SG (2005) MEMS power generator with transverse mode thin film PZT. Sens Actuators A Phys 122:16–22

    Article  CAS  Google Scholar 

  3. Khan A, Abas Z, Soo Kim H, Oh I (2016) Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart Mater Struct 25:053002

    Article  Google Scholar 

  4. Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J, Zhang S (2019) Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 102:72–108

    Article  CAS  Google Scholar 

  5. Luo H, Roscow J, Zhou X, Chen S, Han X, Zhou K, Zhang D, Bowen CR (2017) Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers. J Mater Chem A 5:7091–7102

    Article  CAS  Google Scholar 

  6. Li F, Zhou M, Zhai J, Shen B, Zeng H (2018) Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance. J Eur Ceram Soc 38:4646–4652

    Article  CAS  Google Scholar 

  7. Yan F, Zhou X, He X, Bai H, Wu S, Shen B, Zhai J (2020) Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy 75:105012

    Article  CAS  Google Scholar 

  8. Zhu X, Shi P, Lou X, Gao Y, Guo X, Sun H, Liu Q, Ren Z (2020) Remarkably enhanced energy storage properties of lead-free Ba0.53Sr0.47TiO3 thin films capacitors by optimizing bottom electrode thickness. J Eur Ceram Soc 40:5475–5482

    Article  CAS  Google Scholar 

  9. Wang Y, Wu H, Qin X, Yao K, Pennycook SJ, Tay FEH (2019) Outstanding piezoelectric performance in lead-free 0.95(K,Na)(Sb,Nb)O3-0.05(Bi,Na,K)ZrO3 thick films with oriented nanophase coexistence. Adv Electron Mater 5:1800691

    Article  Google Scholar 

  10. Yin J, Zhang Y, Lv X, Wu J (2018) Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. Journal of Materials Chemistry A 6:9823–9832

    Article  CAS  Google Scholar 

  11. Xu Q, Chen X, Chen W, Chen S, Kim B, Lee J (2005) Synthesis, ferroelectric and piezoelectric properties of some (Na0.5Bi0.5)TiO3 system compositions. Mater Lett 59:2437–2441

    Article  CAS  Google Scholar 

  12. Lee H, Sun W, Luo J, Zhou Z, Li J (2018) Sol-gel processing and nanoscale characterization of (Bi0.5Na0.5)TiO3-SrTiO3 lead-free piezoelectric thin films. Ceram Int 44:4114–4120

    Article  CAS  Google Scholar 

  13. Ding J, Pan Z, Chen P, Hu D, Yang F, Li P, Liu J, Zhai J (2020) Enhanced energy storage capability of (1-x)Na0.5Bi0.5TiO3-xSr0.7Bi0.2TiO3 free-lead relaxor ferroelectric thin films. Ceram Int 46:14816–14821

    Article  CAS  Google Scholar 

  14. Yang C, Lv P, Qian J, Han Y, Ouyang J, Lin X, Huang S, Cheng Z (2019) Fatigue-free and bending-endurable flexible Mn-doped Na0.5Bi0.5TiO3-BaTiO3-BiFeO3 film capacitor with an ultrahigh energy storage performance. Adv Energy Mater 9:1803949

    Article  Google Scholar 

  15. Cao W, Randall CA (1996) Grain size and domain size relations in bulk ceramic ferroelectric materials. J Phys Chem Solids 57:1499–1505

    Article  CAS  Google Scholar 

  16. Hoffmann MJ, Hammer M, Endriss A, Lupascu DC (2001) Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Mater 49:1301–1310

    Article  CAS  Google Scholar 

  17. Yan X, Zheng M, He Y, Zhu M, Hou Y (2020) Origin of superior dielectric and piezoelectric properties in 0.4Ba(Zr0.2Ti0.8)O3-0.6(Ba0.7Ca0.3)TiO3 at intermediate grain sizes. J Eur Ceram Soc 40:3936–3945

    Article  CAS  Google Scholar 

  18. Zhu C, Cai Z, Guo L, Li L, Wang X (2021) Grain size engineered high-performance nanograined BaTiO3-based ceramics: Experimental and numerical prediction. J Am Ceram Soc 104:273–283

    Article  CAS  Google Scholar 

  19. Ghasemian MB, Lin Q, Adabifiroozjaei E, Wang F, Chu D, Wang D (2017) Morphology control and large piezoresponse of hydrothermally synthesized lead-free piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. Rsc Adv 7:15020–15026

    Article  CAS  Google Scholar 

  20. Lu R, Yuan J, Shi H, Li B, Wang W, Wang D, Cao M (2013) Morphology-controlled synthesis and growth mechanism of lead-free bismuth sodium titanate nanostructures via the hydrothermal route. Crystengcomm 15:3984–3991

    Article  CAS  Google Scholar 

  21. Wang Y, Xu G, Yang L, Ren Z, Wei X, Weng W, Du P, Shen G, Han G (2009) Hydrothermal synthesis and characterization of Na0.5Bi0.5TiO3 microcubes. Ceram Int 35:1657–1659

    Article  CAS  Google Scholar 

  22. Zhou X, Jiang C, Chen C, Luo H, Zhou K, Zhang D (2016) Morphology control and piezoelectric response of Na0.5Bi0.5TiO3 synthesized via a hydrothermal method. Crystengcomm 18:1302–1310

    Article  CAS  Google Scholar 

  23. Liu Y, Lu Y, Dai S (2009) Hydrothermal synthesis of monosized Bi0.5Na0.5TiO3 spherical particles under low alkaline solution concentration. J Alloy Compd 484:801–805

    Article  CAS  Google Scholar 

  24. Peng B, Zhang Q, Li X, Sun T, Fan H, Ke S, Ye M, Wang Y, Lu W, Niu H, Scott JF, Zeng X, Huang H (2015) Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv Electron Mater 1:1500052

    Article  Google Scholar 

  25. Thompson CV (1985) Secondary grain growth in thin films of semiconductors: theoretical aspects. J Appl Phys 58:763–772

    Article  CAS  Google Scholar 

  26. Zhang H, Zhu M, Hou Y, Wang R, Yan H, Liu L (2016) Structural modulation of Na0.5Bi0.5TiO3 in hydrothermal synthesis. Int J Appl Ceram Tec 13:569–578

    Article  CAS  Google Scholar 

  27. Jin L, Li F, Zhang S (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97:1–27

    Article  CAS  Google Scholar 

  28. Zhao Z, Buscaglia V, Viviani M, Buscaglia MT, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P (2004) Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys Rev B 70:024107

    Article  Google Scholar 

  29. Arlt G (1990) Twinning in ferroelectric and ferroelastic ceramics - stress relief. J Mater Sci 25:2655–2666

    Article  CAS  Google Scholar 

  30. Wu J, Kang G, Liu H, Wang J (2009) Ferromagnetic, ferroelectric, and fatigue behavior of (111)-oriented BiFeO3/(Bi1/2Na1/2)TiO3 lead-free bilayered thin films. Appl Phys Lett 94:172906

    Article  Google Scholar 

  31. Tang X, Wang J, Wang X, Chan HL (2004) Preparation and electrical properties of highly (111)-oriented (Na0.5Bi0.5)TiO3 thin films by a sol-gel process. Chem Mater 16:5293–5296

    Article  CAS  Google Scholar 

  32. Wang J, Sun N, Li Y, Zhang Q, Hao X, Chou X (2017) Effects of Mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films. Ceram Int 43:7804–7809

    Article  CAS  Google Scholar 

  33. Dargham SA, Ponchel F, Abboud N, Soueidan M, Ferri A, Desfeux R, Assaad J, Remiens D, Zaouk D (2018) Synthesis and electrical properties of lead-free piezoelectric Bi0.5Na0.5TiO3 thin films prepared by Sol-Gel method. J Eur Ceram Soc 38:1450–1455

    Article  CAS  Google Scholar 

  34. Sui H, Yang C, Geng F, Feng C (2015) Effects of Zr doping content on microstructure, ferroelectric and dielectric properties of Na0.5Bi0.5TiO3 thin film. Mater Lett 139:284–287

    Article  CAS  Google Scholar 

  35. Cheng Z, Zhao Z (2018) Ink-jet printed BNT thin films with improved ferroelectric properties via annealing in wet air. Ceram Int 44:10700–10707

    Article  CAS  Google Scholar 

  36. Tunkasiri T, Rujijanagul G (1996) Dielectric strength of fine grained barium titanate ceramics. J Mater Sci Lett 15:1767–1769

    Article  CAS  Google Scholar 

  37. Wu S, Song B, Li P, Chen P, Shen B, Zhai J (2019) Reduced leakage current and enhanced piezoelectricity of BNT-BT-BMO thin films. J Am Ceram Soc 103:1219–1229

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfei Liu or Yinong Lyu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Qian, H., Sun, X. et al. Grain size engineering and growth mechanism in hydrothermal synthesis of Bi0.5Na0.5TiO3 thin films on Nb-doped SrTiO3 substrates. J Sol-Gel Sci Technol 99, 366–375 (2021). https://doi.org/10.1007/s10971-021-05586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05586-y

Keywords

Navigation