Skip to main content
Log in

Investigation of the Physical Properties of Eucalyptus and Pinus halepensis Essential Oils Using Dielectric Spectroscopy and Gas Chromatography–Mass Spectrometry

  • Published:
Journal of Applied Spectroscopy Aims and scope

The gas chromatography-mass spectrometry and dielectric spectroscopy techniques are used to characterize the thermodynamic properties of the essential oils extracted from two main Mediterranean wildland fuels, namely eucalyptus leaves and Pinus halepensis needles. These oils are assumed to be representative of the fuels organic volatile components that exhibit different fire behaviors. The relaxation frequencies determined from the peak of the imaginary permittivity spectra using the Havriliak–Negami empirical law revealed the Arrhenius dependence on temperature. Two activation energies are obtained: the first is around 4.13 kJ/mol for both species, and the second activation energy is around 1.27 kJ/mol for the Pinus halepensis essential oil and around 2.15 kJ/mol for the eucalyptus essential oil. Qualitative and quantitative composition differences are observed with GC–MS measurements for eucalyptus leaves and Pinus halepensis needles essential oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Balbi, F. Morandini, X. Silvani, J. B. Filippi, and F. Rinieri, Combust. Flame, 156, 2217–2230 (2009).

    Article  Google Scholar 

  2. K. Chetehouna, T. Barboni, I. Zarguili, E. Leoni, A. Simeoni, and A. C. Fernandez-Pello, Combust. Sci. Technol., 181, No. 10, 1273–1288 (2009).

    Article  Google Scholar 

  3. L. Courty, K. Chetehouna, J. P. Garo, and D. X. Viegas, In: A volatile Organic Compounds Flammability Approach for Accelerating Forest Fires, Modelling, Monitoring and Management of Forest Fires II, Eds. Perona & Brebbia, WIT Transactions on Ecology and the Environment, 137 (2010).

  4. G. A. Alessio, J. Peñuelas, J. Llusià, R. Ogaya, M. Estiarte, and De Lillis, Int. J. Wildland Fire, 17, No. 2, 274–286 (2008), doi:10.1071/WF07038.

  5. G. Massari and A. Leopaldi, Plant Biosyst., 132 (1998).

  6. L. Catoire and V. Naudet, Proc. Safety Prog., 24, 130–137 (2005)

    Article  Google Scholar 

  7. E. Von Rudloff, Can. J., 53, 2978–2982 (1975).

    Google Scholar 

  8. J. P. Greenberg, H. Friedli, A. B. Guenther, D. Hanson, P. Harley, and T. Karl, Atmos. Chem. Phys., 6, 81–91 (2006).

    Article  ADS  Google Scholar 

  9. A. Koedam, In: Capillary Gas Chromatography in Essential Oils Analysis, Eds. P. Sandra, and C. Bicchi, Huethig, Heidelberg (1987).

    Google Scholar 

  10. S. D. Romano and P. A. Sorichetti, Dielectric Relaxation Spectroscopy in Biodiesel Production and Characterization, Springer Verlag, London (2011).

    Book  Google Scholar 

  11. J. Llusià and J. Peñuelas, Am. J. Bot., 87, 133–140 (2000).

    Article  Google Scholar 

  12. C. S. White, J. Chem. Ecol., 20, 1381–1406 (1994), doi:https://doi.org/10.1007/BF02059813.

    Article  Google Scholar 

  13. M. K. Owens, C. D. Lin, C. A. Taylor, Jr., and S. G. Whisenant, J. Chem. Ecol., 24, No. 12, 2115–2129 (1998).

    Article  Google Scholar 

  14. J. Tranchant, Manuel Pratique de Chromatographie en Phase Gazeuse, Masson et Cie, Paris (1982).

    Google Scholar 

  15. D. Alexandrian and E. Rigolot, Sensibilité du pin d'Alep à l'incendie, Forêt méditerranéenne, 3 (1992).

    Google Scholar 

  16. www.foret-mediterraneenne.org/fr/catalogue (2008).

  17. Alvarez, M. Gracia, J. Vayreda, and J. Retana, Forest Ecol. Manage., 270 (2012).

  18. M. Häusler, J. P. Nunes, P. Soares, J. M. Sánchez, J. M. N. Silva, T. Warneke, J. J. Keizer, and J. M. C. Pereira, Int. J. Remote Sens., 39, 6499–6524 (2018).

    Article  ADS  Google Scholar 

  19. D. L. Pavida, G. M. Lampman, and G. S. Kriz, In: Introduction to Organic Laboratory Techniques, Ed. W. B. Sauders, Philadelphia, USA (1976).

  20. J. F. Clevenger, American Perfumer & Essential Oil Review (1928), pp. 467–503.

  21. M. Gorunovic, N. Mimica-Dukic, G. Kite, and D. Stosic, Pharmazie, 47, H8 (1992).

    Google Scholar 

  22. K. Hannus and G. Pensar, Phytochemistry, 13, 2563–2566 (1974).

    Article  Google Scholar 

  23. E. Bocchio, Parfums, Cosmetiques, Aromes, 63, 61–62 (1985).

    Google Scholar 

  24. J. F. Clevenger, J. Ann. Pharm. Assoc., 17, No. 4, 346–351 (1928).

    Google Scholar 

  25. Novocontrol Technologies GmbH & Co. KG, POT/GAL 15V 10A Electrochemical Impedance Potentiostat Galvanostat Test Interface for Alpha-A Analyzer, User's manual.

  26. Novocontrol Technologies GmbH & Co. KG, Novotherm-HT High Temperature Control Systems 650, 800, 1000, 1200, and 1400, User's manual.

  27. S. Havriliak and Negami, Polymer, 8, 161 (1967).

  28. J. Ross and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Application, Wiley (2005).

  29. A. Schönhals, F. Kremer, and E. Schlosser, Phys. Rev. Lett., 67, 999 (1991).

    Article  ADS  Google Scholar 

  30. F. Kremer, In: Broadland Dielectric Spectroscopy, Ed. A. Schönhals, Springer, Heidelberg (2002).

  31. P. Henning, A. Steinborn, and W. Engewald, Chromatographia, 3, 689–694 (1994).

    Article  Google Scholar 

  32. P. Arpino, A. Prévôt, J. Serpinet, J. Tranchant, A. Vergnol, and P. Witier, In: Manuel Pratique de Chromatographie en Phase Gazeuse, Ed. Masson, Paris (1995).

    Google Scholar 

  33. G. Castello, J. Chromatogr. A, 842, 51–64 (1999).

    Google Scholar 

  34. A. J. Handley and E. R. Adlard, Gas Chromatographic Techniques and Application, Sheffi eld Academic, London, 12, Thermo Fisher Scientific (2011).

  35. G. A. Eiceman, In: Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation, Ed. R. A. Meyers, Wiley, Chichester (2000).

  36. F. G. Kitson, B. S. Larsen, and C. N. McEwen, Gas Chromatography and Mass Spectrometry: A Practical Guide, Academic Press, Boston (1996)

    Google Scholar 

  37. W. M. A. Niessen, Current Practice of Gas Chromatography–Mass Spectrometry, Marcel Dekker, New York (2001).

    Book  Google Scholar 

  38. F. Z. Sabi, Fire Safety J., 119, 103257 (2021), doi: https://doi.org/10.1016/j.firesaf.2020.103257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Harrouz.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, p. 505, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrouz, O., Frenzel, F., Mosbah, O. et al. Investigation of the Physical Properties of Eucalyptus and Pinus halepensis Essential Oils Using Dielectric Spectroscopy and Gas Chromatography–Mass Spectrometry. J Appl Spectrosc 88, 668–673 (2021). https://doi.org/10.1007/s10812-021-01223-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01223-2

Keywords

Navigation