Skip to main content

Advertisement

Log in

Computational Platform FluorSimStudio for Processing Kinetic Curves of Fluorescence Decay Using Simulation Modeling and Data Mining Algorithms

  • Published:
Journal of Applied Spectroscopy Aims and scope

Herein, a computational platform FluorSimStudio was developed for processing fluorescence decay curves in molecular systems, which implements the concept of complex analysis of experimental information based on the simulation modeling and data mining methods. Data analysis includes partitioning the fluorescence decay curves into clusters according to the degree of likeness in some measure of similarity, finding the median cluster members (medoids), applying the data reduction method and visualizing the experimental data in a two-dimensional space. Analysis of the decay curves is carried out by the analytical or simulation models of optical processes occurring in molecular systems. The visualization of data clusters in the original and transformed time spaces is done with the aim of user interaction. A functional scheme of the platform is proposed, the choice of software for ensuring high computing performance is substantiated, a web application of the platform is implemented (https://dsa-cm.shinyapps.io/FluorSimStudio), and the results of a comparative analysis of the simulation algorithms are presented. The performance of the computational platform was confirmed by examples of the analysis of data sets representing systems of free fluorophores and in the presence of the Förster electronic excitation energy transfer process. The computational platform is an open system and allows permanent addition of complex analysis models, taking into account the development of new algorithms for modeling the energy transfer processes in molecular systems, studied with the use of time-resolved fluorescence spectroscopy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Choubeh, L. Bar-Eya, Y. Paltiel, N. Keren, P. C. Struik, and H. van Amerongen, Photosynth. Res., 143, 13–18 (2020).

    Article  Google Scholar 

  2. L. Michels, V. Gorelova, Y. Harnvanichvech, J. W. Borst, B. Albada, D. Weijers, and J. Sprakel, Proc. Natl. Acad. Sci. USA, 117, No. 30, 18110–18118 (2020).

    Article  Google Scholar 

  3. Fluorescence Spectroscopy and Microscopy: Methods and Protocols. Methods in Molecular Biology, Y. Engelborghs and A. J. W. G. Visser (Eds.), Springer Science+Business Media, LLC (2014), p. 1076.

  4. J. T. Smith, R. Yao, N. Sinsuebphon, A. Rudkouskaya, N. Un, J. Mazurkiewicz, M. Barroso, P. Yan, and X. Intes, Proc. Natl. Acad. Sci. USA, 116, No. 48, 24019–24030 (2019).

    Article  Google Scholar 

  5. W. M. J. Franssen, F. J. Vergeldt, A. N. Bader, H. van Amerongen, and C. Terenzi, J. Phys. Chem. Lett., 11, No. 21, 9152–9158 (2020).

    Article  Google Scholar 

  6. M. M. Yatskou, V. V. Skakun, and V. V. Apanasovich, J. Appl. Spectrosc., 87, No. 2, 333–344 (2020).

    Article  ADS  Google Scholar 

  7. N. N. Yatskou, V. V. Skakun, and V. V. Grinev, Informatika, 16, No. 4, 7–24 (2019).

    Google Scholar 

  8. J. Demsar, T. Curk, A. Erjavec, C. Gorup, T. Hocevar, M. Milutinovic, M. Mozina, M. Polajnar, M. Toplak, A. Staric, M. Stajdohar, L. Umek, L. Zagar, J. Zbontar, M. Zitnik, and B. Zupan, J. Machine Learn. Res., 14, 2349–2353 (2013).

    Google Scholar 

  9. M. F. Hornick, E. Marcadé, and S. Venkayala, Java Data Mining: Strategy, Standard, and Practice: A Practical Guide for Architecture, Design, and Implementation, Morgan Kaufmann Publishers Inc., San Francisco (2006).

    Google Scholar 

  10. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, J. Machine Learn. Res., 12, 2825–2830 (2011).

    MathSciNet  Google Scholar 

  11. D. Schmidt, W.-C. Chen, M. A. Matheson, and G. Ostrouchov, Big Data Res., 8, 1–11 (2016).

    Article  Google Scholar 

  12. T. Masters, Data Mining Algorithms in C++. Data Patterns and Algorithms for Modern Applications, Apress, eBook (2018).

  13. J. M. Abuín, N. Lopes, L. Ferreira, T. F. Pena, and B. Schmidt, PLoS One, 15, No. 10, e0239741 (2020); doi: https://doi.org/10.1371/journal.pone.0239741.

    Article  Google Scholar 

  14. Apache Software Foundation. Apache Hadoop, http://hadoop.apache.org.

  15. R Core Team. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing, Vienna, Austria (2020), http://www.R-project.org.

  16. R. Gentleman, V. J. Carey, and D. M. Bates, Genome Biol., 5, No. 10, R80 (2004); doi: https://doi.org/10.1186/gb-2004-5-10-r80.

    Article  Google Scholar 

  17. H2O.ai. (2020) H2O: Scalable Machine Learning Platform. Version 3.30.0.6; https://github.com/h2oai/h2o-3.

  18. M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, Commun. ACM, 59, No. 11, 56–65 (2016).

    Article  Google Scholar 

  19. T. Zhu, H. Chen, X. Yan, Z. Wu, X. Zhou, Q. Xiao, W. Ge, Q. Zhang, C. Xu, L. Xu, G. Ruan, Z. Xue, C. Yuan, G.-B. Chen, and T. Guo, Bioinform. (2021); btaa1088, doi: https://doi.org/10.1093/bioinformatics/btaa1088.

  20. V. Yuan, D. Hui, Y. Yin, M. S. Peñaherrera, A. G. Beristain, and W. P. Robinson, BMC Genomic., 22, No. 1 (2021); doi: https://doi.org/10.1186/s12864-020-07186-6.

  21. J. Lu and S. L. Salzberg, PLoS Comput Biol., 16, No. 12 (2020) e1008439; doi: https://doi.org/10.1371/journal.pcbi.1008439.

  22. RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston (2020); http://www.rstudio.com.

  23. M. M. Yatskou, Computer Simulation of Energy Relaxation and Transport in Organized Porphyrin Systems, Wageningen (2001).

  24. N. N. Yatskou, Data Mining: Manual [in Russian], BSU, Minsk (2014).

    Google Scholar 

  25. H. Shimodaira, Annal. Statist., 32, 2616–2641 (2004).

    Article  Google Scholar 

  26. T. Jolliffie, Principal Component Analysis, Springer, New York (2002).

    Google Scholar 

  27. J. A. Nelder, R. Mead. Comput. J., 8, 308–313 (1965).

    Article  MathSciNet  Google Scholar 

  28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Yatskou.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, pp. 452–461, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatskou, M.M., Apanasovich, V.V. Computational Platform FluorSimStudio for Processing Kinetic Curves of Fluorescence Decay Using Simulation Modeling and Data Mining Algorithms. J Appl Spectrosc 88, 571–579 (2021). https://doi.org/10.1007/s10812-021-01211-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01211-6

Keywords

Navigation