Skip to main content
Log in

The Crystal Structure, Spectral, and Density Functional Theory Studies of [3-(3-Bromophenyl)-cis-4,5-Dihydroisoxazole-4,5-Diyl]bis(Methylene)Diacetate

  • Published:
Journal of Applied Spectroscopy Aims and scope

The crystal structure of [3-(3-bromophenyl)-cis-4,5-dihydroisoxazole-4,5-diyl]bis(methylene)diacetate (BDBD) was determined using X-ray diffraction data. Hirschfeld surface and fingerprint plots were used to locate and analyze the molecular surface. The optimized molecular structures, frontier molecular orbitals, quantum chemical parameters, and NMR chemical shifts of the investigated compound were calculated with DFT at the B3LYP/6-311G(d,p) level of theory. The experimental NMR of the studied compound was measured in deuterochloroform (CDCl3) solvent, employing tetramethylsilane as an internal standard. It was established that the experimental and simulated 1H and 13C NMR spectra were in good agreement. Vibrational spectrum analysis was carried out by FT-IR spectroscopy in the range 400–4000 cm–1 for the title molecule. The vibrational frequencies of the investigated compound were calculated with DFT at the B3LYP/6-311G(d,p) level of the theory. The wavenumbers received complete vibrational assignments based on their potential energy distribution. The experimental and simulated FT-IR spectra were in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Zadrozna, J. Kurkowska, H. Kruszewska, and I. Makuch, Farmaco, 55, 499–501 (2000).

    Article  Google Scholar 

  2. M. Shailaja, A. Manjula, and B. V. Rao, Indian J. Chem., 50B, 214–222 (2011).

    Google Scholar 

  3. J. T. Pulkkinen, P. Honkakoski, M. Perakyla, I. Berczi, and R. Laatikainen, J. Med. Chem., 51, 3562–3571 (2008).

    Google Scholar 

  4. C. T. Molina and A. A. de Palermo, Heterocycl. Commun., 9, 535–538 (2011).

    Google Scholar 

  5. P. Mondal, S. Jana, A. Balaji, R. Ramakrishna, and K. L. Kanthal, J. Young Pharm., 4, 38–41 (2012).

    Article  Google Scholar 

  6. Y. S. Kara, Spectrochim. Acta A, 151, 723–730 (2015).

    Article  Google Scholar 

  7. G. M. Sheldrick, Acta Crystallogr. C: Struct. Chem., 71, 3–8 (2015).

    Article  Google Scholar 

  8. G. M. Sheldrick, Acta Crystallogr. A, 64, 112–122 (2008).

    Article  ADS  Google Scholar 

  9. Bruker, SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA (2006).

  10. A. L. Spek, PLATON-a Multipurpose Crystallographic Tool, Utrecht University (2005).

  11. L. Farrugia, J. Appl. Crystallogr., 45, 849–854 (2012).

    Article  Google Scholar 

  12. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, J. Appl. Crystallogr., 42, 339–341 (2009).

    Article  Google Scholar 

  13. Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT, 2009.

  14. T. Keith and J. Millam, GaussView, Version 5.0.9, Semichem. Inc., Shawnee Mission, KS (2009).

  15. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Google Scholar 

  16. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  ADS  Google Scholar 

  17. E. Cances, B. Mennucci, and J. Tomasi, J. Chem. Phys., 107, 3032–3041 (1997).

    Google Scholar 

  18. N. M. O'Boyle, A. L. Tenderholt, and K. M. Langner, J. Comput. Chem., 29, 839 (2008).

    Article  Google Scholar 

  19. M. N. Arshad, Al-Anood M. Al-Dies, A. M. Asiri, M. Khalid, A. S. Birinji, K. A. Al-Amry, and A. A. C. Braga, J. Mol. Struct., 1141, 142–156 (2017).

  20. D. E. Taylor and R. C. Sausa, J. Mol. Struct., 1162, 45–53 (2018).

    Google Scholar 

  21. N. Dege, N. Senyüz, H. Batı, N. Günay, D. Avcı, O. Tamer, and Y. Atalay, Spectrochim. Acta A, 120, 323–331 (2014).

    Article  Google Scholar 

  22. H. L. Hirshfeld, Theor. Chim. Acta, 44, 129–138 (1977).

    Article  Google Scholar 

  23. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, Crystal Explorer, The University of Western Australia (2017).

  24. S. H. Sumrra, A. H. Atif, and M.N. Zafar, J. Mol. Struct., 1166, 110–120 (2018).

    Google Scholar 

  25. N. M. O'Boyle, A. L. Tenderholt, and K. M. Langner, J. Comput. Chem., 29, 839 (2008).

    Article  Google Scholar 

  26. S. M. Hiremath, A. S. Patil, C. S. Hiremath, M. Basangoudac, S. S. Khemalapure, N. R. Patil, S. B. Radder, S. J. Armakovi, and S. Armakovi, J. Mol. Struct., 1178, 1–17 (2019).

    Google Scholar 

  27. C. Zhan, J. A. Nichols, and D. A. Dixon, J. Phys. Chem. A, 107, 4184–4195 (2003).

    Google Scholar 

  28. P. Govindasamy and S. Gunasekaran, Spectrochim. Acta A, 149, 800–811 (2015).

    Article  Google Scholar 

  29. A. Lesar and I. Milosev, Chem. Phys. Lett., 483, 198–203 (2009).

    Article  ADS  Google Scholar 

  30. C. Bustos-Brito, V. J. Vázquez-Heredia, F. Calzada, L. Yépez-Mulia, J. S. Calderón, S. Hernández-Ortega, B. Esquivel, N. García-Hernández, and L. Quijano, Molecules, 21, 1132–1144 (2016).

    Article  Google Scholar 

  31. B. Mirosław, D. Babyuk, A. Łapczuk-Krygier, A. Kacka-Zych, O. M. Demchuk, and R. Jasin'ski, Monatsh. Chem. Chem. Mon., 149, 1877–1884 (2018).

    Article  Google Scholar 

  32. A. Esme and S. G. Sagdinc, J. Mol. Struct., 1048, 185–195 (2013).

    Google Scholar 

  33. G. Varsanyi, L. Lang, and M.A. Kovner, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Academiai Kiado, Budapest, 44, 22 (1973).

  34. S. Muthu and J. U. Maheswari, Spectrochim. Acta A, 92, 154–163 (2012).

    Article  ADS  Google Scholar 

  35. N. B. Colthup, L. H. Daly, and S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (1975).

    Google Scholar 

  36. M. Diem, Introduction to Modern Vibrational Spectroscopy, Wiley, New York (1993).

    Google Scholar 

  37. D. Sajan, J. Binoy, B. Pradeep, K. V. Krishnan, V. B. Kartha, I. H. Joe, and V. S. Jayakumar, Spectrochim. Acta A, 60, 173–180 (2004).

    Article  ADS  Google Scholar 

  38. D. N. Sathyanarayana, Vibrational SpectroscopyTheory and Applications, New Age International (P) Ltd. Publishers, New Delhi (2004).

    Google Scholar 

  39. M. E. D. Lestard, M. E. Tuttolomondo, D. A. Wann, H. E. Robertson, D. W. H. Rankin, and A. B. Altabef, J. Raman Spectrosc., 41, 1357–1368 (2010).

    Article  ADS  Google Scholar 

  40. N. Subramania, N. Sundaraganesan, and J. Jayabharathi, Spectrochim. Acta A, 76, 259–269 (2010).

    Article  ADS  Google Scholar 

  41. P. Grunanger and P. V. Finzi, The Chemistry of Heterocyclic Compounds, Isoxazoles, John Wiley & Sons (1991).

    Google Scholar 

  42. S. Eryılmaz, M. Gül, E. İnkaya, and M. Taş, J. Mol. Struct., 1108, 209–222 (2016).

    Google Scholar 

  43. R. Y. Jin, X. H. Sun, Y. F. Liu, W. Long, B. Chen, S. Q. Shen, and H. X. Ma, Spectrochim. Acta A, 152, 226–232 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Kara.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, p. 501, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, Y.S., Eşme, A. & Sagdinc, S.G. The Crystal Structure, Spectral, and Density Functional Theory Studies of [3-(3-Bromophenyl)-cis-4,5-Dihydroisoxazole-4,5-Diyl]bis(Methylene)Diacetate. J Appl Spectrosc 88, 633–644 (2021). https://doi.org/10.1007/s10812-021-01219-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01219-y

Keywords

Navigation