Skip to main content
Log in

Spectrofluorimetric Method for the Determination of Azelastine Hydrochloride in Bulk and Nasal Formulations

  • Published:
Journal of Applied Spectroscopy Aims and scope

A reproducible, sensitive, and cost-effective spectrofluorimetric method has been developed for the quantification of azelastine hydrochloride in its bulk and nasal formulations. The stability-indicating potential of the method was assessed by recovery studies in the forced degraded solutions of the drug. The method was validated in accordance with the ICH guidelines with respect to linearity, accuracy, precision, limit of detection (LOD), limit of quantification (LOQ), and robustness. Excellent linearity was noted in the concentration range 2.0–40.0 μg/mL with a correlation coefficient (R2) of 0.9961. The limits of detection and quantitation for the proposed method were found to be 0.1598 μg/mL and 0.4845 μg/mL respectively. Excellent recovery of the drug was obtained from the proposed method in the nasal spray formulation of the drug (96.5, 0.66% RSD). The stability-indicating potential of the method was assessed from recovery studies of the drug from various forced-degraded samples spiked with known drug concentrations. The studies indicated a high rate of degradation in alkaline, oxidative, and photolytic stress degraded solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/20114S006_Astelin%20Nasal%20Spray_Approv.pdf.

  2. M. D. Scarupa and M. A. Kaliner, World Allergy Org. J., 2, 20–25 (2009).

    Article  Google Scholar 

  3. J. A. Bernstein, Curr. Med. Res. Opin., 23, 2441–2452 (2007).

    Article  Google Scholar 

  4. C. Lee, J. Corren, Expert Opin. Pharmacother., 8, No. 5, 701–709 (2007).

    Article  Google Scholar 

  5. L. M. da Costa, H. Oliveira de Almeida Leite, N. M. Kassab, and A. K. Singh, Int. J. Anal. Chem., 1–11 (2019).

  6. S. Patel, T. Y. Pasha, Asian J. Pharm. Clin. Res., 11, 248–251 (2018).

    Article  Google Scholar 

  7. M. E. M. Hassouna, M. M. Abdelrahman, and M. A. Mohamed, J. Forensic Sci. Criminal Invest., 1, 555565–555575 (2017).

    Google Scholar 

  8. B. Thangabalan and P. V. Kumar, Int. J. Pharm. Sci. Rev. Res., 17, 62–64 (2012).

    Google Scholar 

  9. K. L. N. Rao, K. P. Reddy, K. S. Babu, K. S. Raju, K. V. Rao, and J. V. Shaik, Int. J. Res. Pharm. Sci., 1, 473–480 (2010).

    Google Scholar 

  10. R. Dubey, S. Das, S. Roychowdhury, and K. K. Pradhan, M. Ghosh, Pharmbit, 27, 9–11 (2013).

    Google Scholar 

  11. N. S. Abdelwahab, N. F. Farid, M. Elagawany, and E. H. Abdelmomen, Biomed. Chromatogr., 32, e4346 (2018).

    Article  Google Scholar 

  12. N. N. Salama, S. A. Abdel-Razeq, S. Abdel-Atty, and N. El-Kosy, Br. J. Pharm. Res., 79–92 (2014).

  13. M. R. Elghobashy, O. M. Badran, M. Y. Salem, and K. M. Kelani, Anal. Bioanal. Electrochem., 8, 325–340 (2013).

    Google Scholar 

  14. M. E. Hassouna, M. M. Abdelrahman, and M. A. Mohamed, World, 2, 48–56 (2017).

    Google Scholar 

  15. S. K. Savale, Asian J. Biomater. Res, 3, 1–5 (2017).

    Google Scholar 

  16. A. A. Gouda, R. El Sheikh, and H. El Saied, Can. Chem. Trans., 3, 29–41 (2015).

    Google Scholar 

  17. J. Y. Kim, J. Y. Choi, C. Y. Yoon, S. Cho, W. S. Kim, and J. A. Do, J. Kor. Soc. Appl. Biol., 58, 137–147 (2015).

    Google Scholar 

  18. J. Y. Kim, J. A. Do, J. Y. Choi, S. Cho, W. S. Kim, and C. Y. Yoon, Biomed. Chromatogr., 29, 465–474 (2015).

    Article  Google Scholar 

  19. J. T. Yang, K. K. Wong, N. Kucharczyk, and R. D. Sofi a, Drug Metab. Dispos., 20, 536–540 (1992).

  20. J. Pivonka, F. H. Segelman, C. A. Hartman, W. E. Segl, N. Kucharczyk, and R. D. Sofi a, J. Chromatogr. B: Biomed. Sci. Appl., 420, 89–98 (1987).

  21. Y. S. Park, S. H. Kim, Y. J. Kim, S. C. Yang, M. H. Lee, L. M. Shaw, and J. S. Kang, Int. J. Biomed. Sci., 6, 120–127 (2013).

    Google Scholar 

  22. U. Heinemann, G. Blaschke, and N. Knebel, J. Chromatogr. B, 793, 389–404 (2003).

    Google Scholar 

  23. R. N. El-Shaheny and K. Yamada, Anal. Sci., 30, 691–697 (2014).

    Article  Google Scholar 

  24. S. A. Abdel-Razeq, N. N. Salama, S. Abdel-Atty, and N. El-Kosy, Pharm. Anal. Acta, 3, 1-4 (2012).

    Google Scholar 

  25. S. A. Abdel-Razeq, M. M. Foaud, N. N. Salama, S. Abdel-Atty, and N. El-Kosy, In: Sensing in Electroanalysis, Eds. K. Kalcher, R. Metelka, I. Švancara, and K. Vytřas, 6, University Press Centre, Pardubice, Czech Republic, 289–305 (2011).

  26. ICH, Validation of Analytical Procedures: Text and Methodology Q2 (R1), Int. Conf. Harmonization, Geneva, Switzerland, 11, 1–13 (2005).

  27. ICH, Photostability Testing of New Active Substances and Medicinal Products Q1B, Int. Conf. Harmonization, Geneva, Switzerland, 1–11 (1996).

  28. https://chemaxon.com/products/calculators-and-predictors#pka.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bali.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, p. 506, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, S., Bali, A. Spectrofluorimetric Method for the Determination of Azelastine Hydrochloride in Bulk and Nasal Formulations. J Appl Spectrosc 88, 674–680 (2021). https://doi.org/10.1007/s10812-021-01224-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01224-1

Keywords

Navigation