Skip to main content

Advertisement

Log in

Variation in the Collimator Beam Size of Energy-Dispersive X-Ray Fluorescence Spectroscopy for Improved Measurement of Gold Purity

  • Published:
Journal of Applied Spectroscopy Aims and scope

The demand to improve the efficiency of precious metal trade has been increasing of late. Due to its non-destructive nature, energy-dispersive X-ray fluorescence has the potential to supplant the fire assay procedure. Improved accuracy in the measurement of gold purity can be achieved by optimizing the X-ray fluorescent signal by selecting a suitable collimator beam size. Four homogenous materials with different alloy matrix of gold-certified reference were investigated. The effects of collimator beam sizes on the accuracy of gold purity evaluation were observed. The findings can be treated as the foundation to improve the accuracy of gold purity measurement with X-ray fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Caporali, S. Bellandi, M. Innocenti, O. Lopilato, L. Romualdi, and G. Pezzatini, Gold Bull., 43, No. 2, 122–130 (2010).

    Article  Google Scholar 

  2. M. I. Dzyubenko, S. N. Kolpakov, D. F. Kulishenko, and A. A. Priyomko, J. Appl. Spectrosc., 77, No. 2, 279–284 (2010).

    Article  ADS  Google Scholar 

  3. A. P. M. Content, Platinum Met. Rev., 55, No. 4, 281–283 (2011).

    Article  Google Scholar 

  4. A. Jotanović, M. Memić, Š. Suljagić, and J. Huremović, Bull. Chem. Technol. Bosnia Herzegovina, 38, 13–18 (2012).

    Google Scholar 

  5. T. Artyukh, I. Hryhorenko, А. Ternova, S. Yaheliuk, and M. Cernavca, East.-Eur. J. Enterprise, 5, No. 12, 6–18 (2018).

    Google Scholar 

  6. P. Battaini, E. Bemporad, and D. De Felicis, Gold Bull., 47, Nos. 1–2, 9–20 (2014).

    Google Scholar 

  7. H. Li, S. J. Shi, X. Wang, Y. Zhu, N. Yu, and Y. J. Wang, Adv. Mater. Res., 1120, 1350–1355 (2015).

    Article  Google Scholar 

  8. A. P. M. Content, Platinum Met. Rev., 55, No. 4, 281–283 (2011).

    Article  Google Scholar 

  9. M. Balcerzak, Anal. Sci., 18, No. 7, 737–750 (2002).

    Article  Google Scholar 

  10. D. Díaz, D. W. Hahn, and A. Molina, Spectrochim. Acta B: At. Spectrosc., 136, 106–115 (2017).

    Article  ADS  Google Scholar 

  11. A. Buccolieri, A. Castellano, E. Degl'Innocenti, R. Cesareo, R. Casciaro, and G. Buccolieri, X-Ray Spectrom., 46, No. 5, 421–426 (2017).

    Article  ADS  Google Scholar 

  12. I. Tissot, M. Tissot, M. Manso, L. C. Alves, M. A. Barreiros, T. Marcelo, and M. F. Guerra, Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At., 306, 236–240 (2013).

    Article  ADS  Google Scholar 

  13. M. Ghosh, K. K. Swain, T. A. Chavan, D. N. Wagh, and R. Verma, X-Ray Spectrom., 44, No. 1, 13–15 (2015).

    Article  ADS  Google Scholar 

  14. A. Jurado-López, L. De Castro, and R. Pérez-Morales, Gold Bull., 39, No. 1, 16–21 (2006).

    Article  Google Scholar 

  15. Z. Sándor, S.Tölgyesi, I. Gresits, and M. Káplán-Juhász, J. Radioanal. Nucl. Chem., 246, No. 2, 385–389 (2000).

    Article  Google Scholar 

  16. M. W. Marashdeh, Heliyon, 4, No. 8, E00724 (2018).

    Article  Google Scholar 

  17. M. Singh, G. Singh, B. S. Sandhu, and B. Singh, Appl. Rad. Isotop., 64, No. 3, 373–378 (2006).

    Article  Google Scholar 

  18. R. Sitko, B. Zawisza, and E. Malicka, Spectrochim. Acta B: At. Spectrosc., 64, No. 5, 436–441 (2009).

    Article  ADS  Google Scholar 

  19. A. Pitarch and I. Queralt, Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At., 268, No. 10, 1682–1685 (2010).

    Article  ADS  Google Scholar 

  20. F. M. Nor, A. R. Tamuri, and A. K. Ismail, Int. J. Eng. Technol., 8, No. 1, 165–172 (2019).

    Google Scholar 

  21. M. J. Navas, A. G. Asuero, and A. M. Jiménez, Appl. Spectrosc., 70, No. 1, 207–221 (2016).

    Article  ADS  Google Scholar 

  22. S. Scrivano, B. Gómez-Tubío, I. Ortega-Feliu, F. J. Ager, A. I. Moreno-Suárez, M. A. Respaldiza, and A. Marmolejo, X-Ray Spectrom., 42, No. 4, 251–255 (2013).

    Article  ADS  Google Scholar 

  23. K. O. Emeriewen and F. E. Oladugbagbe, Int. J. Conserv. Sci., 5, No. 3, 321–328 (2014).

    Google Scholar 

  24. R. M. Conrey, M. Goodman-Elgar, N. Bettencourt, A. Seyfarth, A. Van Hoose, and J. A. Wolff, Geochem.: Exp., Environ., Anal., 14, No. 3, 291–301 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. M. Mazuki.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, pp. 432–436, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazuki, A.A.M., Mahat, M.M., Ramli, R. et al. Variation in the Collimator Beam Size of Energy-Dispersive X-Ray Fluorescence Spectroscopy for Improved Measurement of Gold Purity. J Appl Spectrosc 88, 552–556 (2021). https://doi.org/10.1007/s10812-021-01208-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01208-1

Keywords

Navigation